
ParaShares: Finding the Important Basic Blocks

in Multithreaded Programs

Melanie Kambadur, Kui Tang, and Martha Kim

Columbia University, New York, NY
{melanie, martha}@cs.columbia.edu, kt2384@columbia.edu

Abstract. Understanding and optimizing multithreaded execution is a
significant challenge. Numerous research and industrial tools debug par-
allel performance by combing through program source or thread traces
for pathologies including communication overheads, data dependencies,
and load imbalances. This work takes a new approach: it ignores any
underlying pathologies, and focuses instead on pinpointing the exact lo-
cations in source code that consume the largest share of execution. Our
new metric, ParaShares, scores and ranks all basic blocks in a program
based on their share of parallel execution. For the eight benchmarks ex-
amined in this paper, ParaShare rankings point to just a few important
blocks per application. The paper demonstrates two uses of this infor-
mation, exploring how the important blocks vary across thread counts
and input sizes, and making modest source code changes (fewer than 10
lines of code) that result in 14-92% savings in parallel program runtime.

1 Introduction

With massive-scale data to analyze, explosive growth in server and mobile core
counts, and multithreading making its way into mainstream language specifi-
cations such as C++ [22], parallel software is officially ubiquitous. All parallel
applications share the same fundamental goal of making the best use of resources:
time, power, money, or some combination of these. To honor this goal, programs
must be performant, bug-free, scalable, and not overly difficult to write or de-
bug. Parallel program optimization poses particular challenges, as developers
must uncover and address a nearly unbounded catalog of potential inefficiencies
arising at any level of the stack, from relatively high level algorithmic and design
choices, to program inputs, to source language implementation, to thread library
selection, to operating system configurations, and the target hardware platform.
Correcting performance inefficiencies requires programmers to have knowledge
of, and potentially, take action at, multiple levels of the stack.

Many research and industrial tools have been introduced over the years to
help programmers correct parallel performance inefficiencies. Generally these
tools employ one of two broad strategies. The first is to look for specific kinds of
errors, sometimes within targeted program regions such as a program’s critical
path. For example, tools may identify load imbalances [4], long waits [16, 8],
lock contention [23, 6], I/O blocking [18], or unnecessary I/O [5]. One issue with

this approach is that each type of inefficiency may need its own tool or search
procedure. The second general strategy is to troll for multiple or broader types
of problems by tracking hardware and system events. Some tools track thread
traces and program runtimes to predict which threads will scale poorly in future
runs [9, 12]. Other tools take a hardware perspective, monitoring instruction
counts, CPU utilization, thread preemption rates, and cache latencies [14, 7,
26, 15, 21, 1]. Unfortunately, linking hardware events back to software can pose
a number of challenges. For example, event data may need to be aggregated
across parallel threads. Additionally, it is often difficult to connect certain events
precisely to software, meaning that areas of code identified as problematic may
be large.

This paper utilizes a third strategy for performance debugging. ParaShares
identify very tiny regions of code that take up the majority of multithreaded
execution, agnostic to the type or cause of underlying performance pathologies.
Their only goal is to precisely point programmers to the lines in their program
that would benefit most from optimizations. A ParaShare is a rankable score
that measures each basic block’s share of a total parallel program’s execution.
The rankings are similar to hot block analyses that report the most frequently
executed basic blocks and their CPU use. However, ParaShares factor in the
degree of program parallelism at each block execution, providing a more accurate
reflection of a block’s contribution to wall-clock execution time. The weighting
scheme downgrades the importance of blocks that execute during highly parallel
program phases. As a result, it ranks blocks that mostly run during serial phases
relatively higher in importance as they tend to consume a greater fraction of
runtime.

Per block parallelism weights are enabled by parallel block vector (PBV) pro-
filing [17], a recent technique which was introduced for the purpose of improving
micro-architectural design. In the next section, we explain this new application
of PBVs in more detail, comparing ParaShares to existing analyses and moti-
vating the use of such a precise and fine-grained performance debugging tool
(Sect. 2). We then present a step by step procedure for collecting and analyzing
ParaShares (Sect. 3). Finally, using ParaShares for eight benchmark applications,
we examine how the key optimization points move as input size and parallelism
vary (Sect. 4.1), and make small, ParaShare-targeted source code changes that,
although only a few lines apiece, speed the benchmarks 14–92%(Sect. 4.2).

2 ParaShares

ParaShares are a new way to rank the basic blocks in a parallel program accord-
ing to their relative multithreaded runtime contributions. This section defines
ParaShares, describes how they differ from traditional hot block analyses, gives
readers a first look at experimentally collected ParaShares, and makes a case for
analyses that focus on fine-grained regions of code.

Fig. 1: ParaShares rank basic blocks to identify those with the greatest im-

pact on parallel execution, weighting blocks by the runtime parallelism exhibited by
the application each time the block was executed.

2.1 The Basic Concept

Basic blocks are small program fragments, constrained to be a linear sequence
of instructions with a single entry point and a single exit point. As the program
executes, some blocks will be executed very frequently, while others may execute
rarely or not at all. The frequently executed blocks are called “hot” and are im-
portant optimization targets as they constitute a large share of an application’s
dynamic work. Hot block analysis has traditionally been used for a variety of
purposes, including JIT translation [24], garbage collection optimizations [13],
simulation points analysis [19], code cache management [20], and parallel per-
formance debugging, for example, in Intel’s VTune Amplifier [15].

ParaShares makes a subtle but important twist on traditional hot block anal-
yses, weighting each basic block by the degree of parallelism exhibited by the
program when the block was executed. Figure 1 illustrates the significance of this
change. On the left is a program trace that highlights the execution patterns of
two blocks of interest, A (gray) and B (black). For simplicity, we assume that
both blocks have the same number of instructions and equal execution times,
though in actual ParaShare computations this unlikely assumption is amended
(Sect. 3.1). Simple counting reveals that B executes 9 times whereas A executes
only 4, giving B a higher rank of importance. However, A may consume more of
the program’s execution time because its executions occur during serial phases
of the program. To account for this nuance, ParaShares divides the executions
by the degree of parallelism at execution time, in this example dividing B’s 9
executions by the 4 threads that ran while B executed, and dividing A’s 4 blocks
by 1 for the single running thread. As a rule, parallelism is counted at the start
of a basic block’s execution to resolve any overlaps in block executions between
threads. The resulting scores capture parallel execution shares more effectively,
and in this case rank A and B in the opposite order of importance versus tradi-
tional execution counts.

2.2 A First Look At Real Applications

Figure 2 gives a first look at ParaShare block rankings for real applications,
eight programs from the Parsec Version 3.0 [3] and Splash-2 [25] benchmark

0%

10%

20%

30%

40%

 0 15 30 45 60

P
ar

aS
ha

re
 %

Basic Blocks

blackscholes

0%

10%

20%

30%

40%

 0 100 200 300

P
ar

aS
ha

re
 %

Basic Blocks

streamcluster

 0 150 300 450 600

Basic Blocks

canneal

 0 250 500 750 1000

Basic Blocks

radiosity

 0 250 500 750 1000

Basic Blocks

raytrace

 0 50 100 150

Basic Blocks

swaptions

 0 150 300 450 600

Basic Blocks

volrend

 0 100 200 300

Basic Blocks

water_nsquared

Fig. 2: ParaShare rankings identify important blocks to target for multi-

threaded performance optimizations. These graphs show the ParaShare percent-
ages (ordered from greatest to least share) of all the basic blocks in eight benchmark
applications.

suites, namely blackscholes, canneal, radiosity, raytrace, streamcluster,
swaptions, volrend, and water nsquared. The Splash2x variant of Splash that
is packaged with Parsec was used for its provision of multiple input sets. All
of the applications are written in C and C++ and parallelized using pthreads
with a variety of design patterns, including a mix of data and task parallelism.
Each program was run alone using 24 threads and native input set sizes on a Dell
PowerEdge R420 server. The server is dual socket with Intel Sandybridge E5-243
chips, each with six cores and two-way hyper-threading for a total of 24 effective
cores. The system has 24GB of DRAM and runs Ubuntu 12.04.2 with the 3.9.11
version of the Linux kernel. The graphs show that just a few basic blocks (on
the x-axis) per program dominate the ParaShare rankings (on the y-axis). The
small number of important blocks is no surprise. However, ParaShare’s ability
to highlight blocks that are important in terms of wall-clock time instead of
processor execution times combined across threads makes it possible to massively
improve program performance with just minor code changes, as demonstrated
later in Sect. 4.2.

2.3 Benefits of Fine Granularity

The well known 90-10 rule of thumb says that 90% of program execution time
resides in just 10% of code. For our benchmarks, the rule holds: functions that
consume roughly 90% of the execution represent 2.3-17.3% of the lines in the
overall programs, or an average of 7.7%. Table 1 shows the exact line counts
per benchmark, as well as line counts for the functions consuming 90% of the
execution based on ParaShare computations.

The table also shows the number of lines of code contained in the basic blocks
that are responsible for 90% of the ParaShare execution. Using block-granularity

Benchmark Total 90% Exec By 90% Exec By 50% Exec By

Application Lines Func Lines Block Lines Block Lines

blackscholes 564 68 34 21
canneal 1362 204 70 6
radiosity 11836 276 42 4
raytrace 10963 431 51 8
streamcluster 2539 439 12 5
swaptions 1550 359 28 10
volrend 4227 585 133 89
water nsquared 2079 338 29 18

Table 1: A case for fine-grained identification of performance inefficiencies.

To examine the functions that take up 90% of the parallel execution, a programmer
must examine an average of 338.5 lines per program. To examine the basic blocks that
consumed the same amount, they would need to look at an average of 50 lines per
program.

hotspots rather than function hotspots saves programmers from looking at an
average of 289 lines per benchmark. In fact, basic block hotspots save enough that
we could coin a new 90-2 rule of thumb, because 90% of the parallel execution
is taken up by just 2.4% of the program source lines according to our precise
ParaShares analysis. The top 50% of program execution could be covered by
searching an even more targeted set of code; programmers would need to look
at only 20 source lines per application, or 1% of the overall program. The block
versus function savings is particularly important in unfamiliar applications with
lengthy functions and lots of loops — a feature common to some of the scientific
benchmarks used in this study. For example, volrend has one function with
three sets of doubly nested loops, and we found more than a few instances where
a single function contained four or more loops.

3 Collecting and Analyzing ParaShares

This section describes the framework for translating source code to ParaShare
rankings, examines the robustness of ParaShare rankings across trials, and ex-
perimentally demonstrates that ParaShare weighting can significantly change
top blocks’ relative importance versus traditional profiling.

3.1 The Collection Framework

From a user’s perspective, ParaShares are straightforward to collect. They re-
quire recompilation, a single program run with the usual inputs and usual out-
puts, and the execution of a post-processing script. Under the covers, ParaShares
are more complex, as depicted in the framework in Figure 3. The first two steps
come from previous work, while the remaining steps are new to this work.

Step 1. Compile the source program with Harmony. ParaShares use
parallel block vectors, or PBVs [17], to count how many times each basic block

Fig. 3: The Collection Framework. To collect ParaShares, programmers re-compile
their program with a specialized compiler, then execute it once with normal inputs.
Profiling files produced at compile and execution time are analyzed in post-processing
to give the programmer a list of ParaShares and corresponding source code locations.

executes at each thread count exhibited over the course of a program’s execution.
PBVs are collected via compiler instrumentation, requiring source programs to
be compiled with Harmony [11], an extended version of LLVM. Compilation
with Harmony produces two outputs: an annotated assembly code file and an
instrumented executable file.

Step 2. Execute the program once to collect a PBV. After compilation
with Harmony, a single program run with normal inputs produces a PBV profile
as well as the usual program outputs.

Step 3. (Optional) Tune machine specific parameters. Optionally,
ParaShares can incorporate machine specific instruction weights to account for
differences in opcode processing or memory access times. If used, these weights
should be stored in a dictionary mapping instruction types to latency factors.
Opcode dependent latency factors are often already available online; for exam-
ple, latency factors for our machine are available in [10]. These latency factors
suggest multiplying conditional operations by two, add instructions by one, and
divide instructions by 30, as well as multiplicative factors for other types of in-
structions. Due to the overwhelming significance of total instruction count, our
applications’ ParaShare rankings showed minimal sensitivity to these latency
factors. However, latency factors could have more of an effect for other applica-
tions and architectures.

Step 4. Calculate per block static instruction counts. Next, the total
(possibly weighted) instruction count per basic block is calculated. The instruc-
tion contents of each block are available in the annotated assembly file produced
earlier by Harmony. With weighting, a sum of the weights of each instruction in
the block produces a total block weight (Weightb). As an unweighted alternative,
a simple count of the instructions per block suffices.

Step 5. Calculate ParaShare rankings. The ParaShare for each block b is
computed using the block’s static instruction weight and dynamic thread weight.
Specifically, the sum of each block’s executions at thread count t (Execsb,t) are
divided by t. This formula is loosely related to the runtime calculation used
in Quartz [2], but we apply it here at a smaller granularity and for a different
purpose. The ParaShare of block b is the product of this dynamic thread weight
and the static block weight, where max is the maximum number of threads that
ever executes concurrently in the program:

ParaShareb =

max∑

t=1

Execsb,t
t

×Weightb

As necessary for further analysis, the absolute ParaShare for each basic block
can be normalized to the program’s total ParaShare (the sum of ParaShares
across blocks).

Step 6. Use the ParaShare rankings for performance optimizations
or other analyses. Finally, ParaShares can be mapped back to the source code
via compiler debug information in the assembly code.

0%

10%

20%

30%

40%

50%

60%

blackscholes

canneal

radiosity

raytrace

stream
cluster

swaptions

volrend

water_nsq

S
td

ev
 /

M
ax

 T
ria

l

Benchmark

Between Trials
Between Threads
Between Inputs

Fig. 4: Robustness of the metrics. Runtimes and basic block execution counts can
change across program trials, but the differences are small relative to the differences in
ParaShares collected across varying thread counts or input set sizes.

3.2 ParaShare Robustness

A program’s parallel behavior may be inconsistent across runs, changing block
execution counts or overall program runtime. Despite these variations, a single
profiling run can produce representative ParaShares, particularly if the pur-
pose of collection is to examine and optimize the hottest blocks with the high-
est ParaShares. Figure 4 plots the standard deviations of a program’s total
ParaShares as a fraction of the maximum program total ParaShare across ten
trials. Across runs with the same thread count and input, this division was never
more than 7% and averaged only 3.2%. The variation is small when compared
with variations between trials given different maximum thread counts (31% on

average) or different input sizes (48%). In addition to the magnitude of the
overall program ParaShare staying consistent between trials, the ranking of in-
dividual basic blocks varies minimally, and changes only in lower ranked blocks
with ParaShares of 2% or less. This is not the case across thread counts and
input sizes as explored in Sect. 4.1.

-100

-50

 0

 50

 100

 150

blackscholes

canneal

radiosity

raytrace

stream
cluster

swaptions

volrend

water_nsq

P
ar

aS
ha

re
 R

an
k

ve
rs

us

 D
yn

am
ic

 In
st

ru
ct

io
n

R
an

k

Benchmark

Max Increase (Top 90%)
Max Decrease (Top 90%)
Max Incr. (Top 100 blocks)
Max Decr. (Top 100 blocks)

Fig. 5: ParaShares versus unweighted rankings for the blocks representing 90%
of ParaShare execution and for the larger set of the top 100 blocks per application.
ParaShares often significantly impact the relative importance of a block versus dynamic
instruction count rankings not weighted by parallelism.

3.3 Impact of ParaShare Weights

ParaShare’s utility is not just to locate small regions of significant source code,
but to locate significant code that other tools may not highlight. Figure 5 shows
differences in the top block rankings according to ParaShares versus according to
dynamic instruction counting that is unweighted by parallelism. The graph shows
the minimum and maximum differences between two sets of ‘top’ ParaShare
blocks: first, those blocks representing 90% of the execution of 24-thread count
runs (as previously depicted in Fig. 2, this block count varies by application),
and second, the top 100 ParaShare blocks per program. From the first set of
differences, we see significant changes in four of the eight applications. One
block in radiosity is ranked 55 spots higher by ParaShares than by dynamic
instruction counts, and another is ranked 36 spots lower by ParaShares. In the
second, larger set of 100 block differences, rankings change significantly amongst
almost all of the applications. Individual blocks (in raytrace) jump as many as
135 spots in the ParaShare rankings, and fall as many as 72 spots (in canneal).

4 ParaShares in Real Applications

This section uses ParaShares to explore real applications in more detail, exam-
ining how important blocks differ across inputs and thread counts and using
ParaShares for targeted micro-optimizations.

 0

 10

 20

 30

 40

 50

 60

 70

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

1 thread

8 threads

24 threads

N
um

be
r

of
 B

lo
ck

s
in

 T
op

 9
0%

Top Blocks Shared with 1 Thread
Remaining Top Blocks

water_nsqvolrendswaptionsstreamclusterraytraceradiositycannealblackscholes

 0

 20

 40

 60

 80

 100

 120

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

native

sim
large

sim
sm

all

N
um

be
r

of
 B

lo
ck

s
in

 T
op

 9
0%

Top Blocks Shared with native
Remaining Top Blocks

water_nsqvolrendswaptionsstreamclusterraytraceradiositycannealblackscholes

Fig. 6: Top ParaShare blocks vary across thread counts and input sizes. These
differences suggest that optimizations may need to be targeted to the level of expected
parallelism and to input size for maximum effect.

4.1 How Top Blocks Differ

A small handful of basic blocks dominates the ParaShare ranks and overall ex-
ecution. These top blocks can vary significantly across thread counts and input
sizes, suggesting that as environmental circumstances change, optimizations may
need to be re-applied or re-targeted for maximum effect. The top of Fig. 6 plots
the number of blocks that make up the top 90% of each application when run
with 1, 8, and 24 threads. The number of hot blocks can change significantly. For
example, when run with 1 thread, 71 blocks comprise the top 90% of radiosity,
but this number shrinks to 39 when the application runs with 24 threads. The
black part of each bar indicates how many of the top 90% were also in the top
90% of a serial run. Thus, the 39 key blocks in 24-threaded radiosity include
11 blocks that were not important to single-threaded radiosity. While it is
not evident in the plot, the ranking of blocks within the top 90% changes as
well: the block with the highest ParaShare in single-threaded radiosity falls
to 26th place in 24-threaded radiosity. The highest ranking block in single-
threaded streamcluster remains atop the list in 24-threaded streamcluster,
but the second place block falls off of the list entirely, dropping from 19% of the
ParaShare to 0.3%, and the third ranked block falls to the ninth spot.

Hotspots shift even more with program input variations. Black portions of
the bars in the bottom of Fig. 6 show the overlap of other input sizes with
the largest, native input size. Raytrace shows the biggest sensitivity to input,
with the number of top blocks exploding from 22 to 113 between the native and
simsmall inputs. The first two top blocks stay the same across inputs, but their
combined ParaShare drops from 40.9% to 28.3%, while the third block drops
even more sharply from 10.2% to 2.6%. In swaptions, none of the top native
blocks appear amongst the top simsmall blocks. These variations indicate the
surprising degree to which the internal dynamics of a parallel application can
shift depending on simple parameters such as thread count and input size.

0%

20%

40%

60%

80%

100%

1 2 4 8 16 24

M
ea

su
re

d
T

im
e

R
el

at
iv

e
to

 S
er

ia
l U

no
pt

im
iz

ed

Maximum Threads

blackscholes

1 2 4 8 16 24

Maximum Threads

streamcluster

1 2 4 8 16 24

Maximum Threads

swaptions

Unoptimized Optimized

Fig. 7: ParaShares pinpoint inefficiencies that lead to significant opportuni-

ties for optimization. With the extremely targeted profiling provided by ParaShares,
we were able to improve benchmark performance by up to 92% through source code
changes less than 10 lines long.

4.2 Performance Tuning

Using ParaShares to target particularly important lines of source code, we made
extremely simple and short source code changes to reduce application run-
times 14-92%. Figure 7 shows the effect of optimizations to blackscholes,
streamcluster, and swaptions. Both optimized and unoptimized versions were
compiled with LLVM’s -O3 optimization set. Our manual optimizations improve
computation time, but do not make any algorithmic or parallelization changes.
As a result, the savings shrink as thread counts increase, but they remain sig-
nificant (up to 82%) even at large thread counts.

In blackscholes, the top two blocks consume nearly 60% of the overall run-
time given 24 threads and native input sizes. These blocks are found in the kernel
function which calculates financial option values. By collapsing the original 20
temporary variables in the function to 3, we alleviated register pressure resulting
in a 44.6% performance improvement at one thread and 22% at 24 threads. For
streamcluster, the top blocks are found in the dist() function, which com-
putes the squared Euclidean distance between two Points, each of which is a

struct with pointers to arrays of float coordinates. Inspecting the line of code in
question (the body of a nested for loop), we guessed that the compiler missed an
opportunity for common subexpression elimination, then modified the code to
force it to do so. This change halved the loop body’s original four array lookups
and two subtractions and reduced register pressure, saving 92% of the serial run-
time, and 64% of the 24 thread runtime. Finally, the top blocks in swaptions cor-
respond to a few nested loops within the HJM SimPath Forward Blocking.cpp

file. We experimentally unrolled these loops one to four times to find the op-
timum unrolling level for each. In addition to the inability of the compiler to
dynamically test a variety of unrolling levels, these opportunities may have been
missed because the loops involve nested accesses to custom data structures. In
total, our loop optimizations resulted in a 15% savings for a single threaded
swaptions execution, and a 19.7% savings for a 24-thread execution.

Given the simplicity of our optimizations, the performance savings are dispro-
portionately large. Across a datacenter or many nodes in a distributed system,
the savings could be even more important, and potentially financially significant
as well. Best of all, we were able to make the optimizations quickly, because
ParaShares allowed us to focus our efforts on just a few lines of code rather than
thousands.

5 Conclusions

ParaShares provides a new lens through which to analyze multithreaded ap-
plication performance. In contrast to most parallel performance optimization
techniques, ParaShares do not target a specific type of inefficiency or level of
the system stack. Instead, ParaShares track parallelism from the code’s point of
view, weighting each basic block execution by the whole program’s parallelism at
the time of the execution. This fine-grained scoring makes it simple to localize
important lines of code, even in large or unknown programs. Once important
code is localized, more extensive analysis and optimizations can be precisely
targeted, leading to small code changes with big performance effects.

References

1. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurrency and Computation, 22(6), Apr. 2010.

2. T. E. Anderson and E. D. Lazowska. Quartz: a tool for tuning parallel program
performance. SIGMETRICS, 18:115–125, 1990.

3. C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, 2011.

4. D. Bohme, F. Wolf, B. R. de Supinski, M. Schulz, and M. Geimer. Scalable critical-
path based performance analysis. In IPDPS, 2012.

5. M. Chabbi and J. Mellor-Crummey. Deadspy: a tool to pinpoint program ineffi-
ciencies. In CGO, 2012.

6. G. Chen and P. Stenstrom. Critical lock analysis: diagnosing critical section bot-
tlenecks in multithreaded applications. In SC, 2012.

7. K.-Y. Chen, J. Chang, and T.-W. Hou. Multithreading in Java: Performance and
scalability on multicore systems. Transactions on Computers, 60(11), Nov. 2011.

8. K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Criticality stacks: Identify-
ing critical threads in parallel programs using synchronization behavior. In ISCA,
2013.

9. K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle graphs: Visualizing
scalability bottlenecks in multi-threaded applications. In OOPSLA, 2013.

10. T. Granlund. Instruction latencies and throughput for AMD and Intel x86 proces-
sors, Feb. 2012. http://gmplib.org/~tege/x86-timing.pdf.

11. Harmony Parallel Block Vector Collection Tool. http://arcade.cs.columbia.

edu/harmony.
12. Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview scalability analyzer.

In SPAA, pages 145–156, 2010.
13. X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang, and P. Cheng.

The garbage collection advantage: Improving program locality. In OOPSLA, Oct.
2004.

14. Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen. HaLock: hardware-
assisted lock contention detection in multithreaded applications. In PACT, 2012.

15. IntelR© Corporation. IntelR© Parallel Amplifier 2011. http://software.intel.

com/en-us/articles/intel-parallel-amplifier/.
16. J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. Bottleneck identification

and scheduling in multithreaded applications. In ASPLOS, 2012.
17. M. Kambadur, K. Tang, and M. A. Kim. Harmony: Collection and analysis of

parallel block vectors. In ISCA, June 2012.
18. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. Bruce,

I. Karen, L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel
performance measurement tools. IEEE Computer, 1995.

19. E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder. Using
simpoint for accurate and efficient simulation. In SIGMETRICS, volume 31. ACM,
2003.

20. H. Shi, Y. Wang, H. Guan, and A. Liang. An intermediate language level op-
timization framework for dynamic binary translation. SIGPLAN Notices, 42(5),
May 2007.

21. STMicroelectronics, Inc. PGProf: parallel profiling for scientists and engineers,
2011. http://www.pgroup.com/products/pgprof.htm.

22. B. Stroustrup. C++11 the new ISO C++ standard, 2013. http://www.

stroustrup.com/C++11FAQ.html.
23. N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing lock contention

in multithreaded applications. In PPoPP, 2010.
24. N. Topham and D. Jones. High speed CPU simulation using JIT binary translation.

In MOBS, volume 7, 2007.
25. S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs:

characterization and methodological considerations. In ISCA, 1995.
26. W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H. Campbell. ADP: automated

diagnosis of performance pathologies using hardware events. In SIGMETRICS,
2012.

