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Abstract—To simplify the implementation of dataflow systems
in hardware, we present a technique for designing latency-
insensitive dataflow blocks. We provide buffering with back-
pressure, resulting in blocks that compose into deep, high-speed
pipelines without introducing long combinational paths. Our
input and output buffers are easy to assemble into simple unit-
rate dataflow blocks, arbiters, and blocks for Kahn networks.
We prove the correctness of our buffers, illustrate how they can
be used to assemble arbitrary dataflow blocks, discuss pitfalls,
and present experimental results that suggest our pipelines can
operate at a high clock rate independent of length.

1. Introduction

While integration levels and clock frequencies continue
to soar, the speed of light has remained stubbornly constant,
meaning circuits must limit themselves to “local” communi-
cation within a single clock cycle. Techniques such as wire
pipelining and latency-insensitive design [4] provide ways
to break long communication paths, but these techniques
either require the designer to consider multicycle wire delays
as part of the design process or introduce needless delays
because the algorithm was developed assuming faster com-
munication.

In this paper, we present a methodology based on patient
input and output buffers that allows a designer to assemble
large dataflow networks without introducing long wires that
would reduce the clock frequency. In our approach, dataflow
blocks can be designed naı̈vely: with arbitrary combinational
logic and without buffering. Adding our buffers breaks any
combinational paths from inputs to outputs, allowing blocks
to be assembled into arbitrary networks without introducing
any clock-rate-sapping long wires. Our technique enables
high clock rates for the same reason as latency insensitive
design, but because our technique exposes the dataflow
model of computation, we can express more efficient al-
gorithms that express richer communication patterns.

One of our basic goals is to reliably transfer a sequence
of data tokens (such as a series of bytes) across a syn-
chronous point-to-point link. Such a link needs flow control
because we assume the transmitter may not have the next
token ready or the receiver is not yet willing to consume
a token. In these cycles, the receiver must wait and the
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Figure 1. Our flow-control protocol transmitting the sequence of tokens
1,2,3,4,5,6. After Cortadella et al. [5] and Li et al. [13].

transmitter must hold the token and transmit it later. We
write “⊥” to denote the absence of a token. Our buffers
ensure tokens are sent and received reliably between blocks,
holding any tokens that are not ready to be consumed and
exerting backpressure to ensure no data is lost or duplicated.

We begin by describing the well-known flow-control
protocol we use: a channel consists of data, a valid bit
that indicates data is present and must not be dropped, and
a stop signal indicating backpressure. Then, we describe a
pair of buffers that speak this protocol on both their inputs
and outputs and prove that they preserve input sequences.
We show how these buffers can be placed around a core—
the computational logic of the dataflow block—to produce
unit-rate and more complicated dataflow blocks. Finally,
we illustrate our methodology with an application—range
partitioning for databases—and show the maximum clock
rate of the pipeline implemented on an FPGA is barely
affected by pipeline length.

2. Flow Control

For flow control, we use the well-known synchronous
parallel protocol in which a valid bit indicates when an
upstream transmitter is attempting to send data and a stop bit
indicates when a downstream receiver is unable to receive
it (Figure 1). This protocol has been given various names:
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module inbuf #(parameter W=8)
(input clk ,
input [W:0] idata , output istop ,
output [W:0] cdata, input cstop );

reg [W:0] ireg = {1′b0, {W{1′bx}}}; // Empty

assign istop = ireg [W]; // Stop if buffering
assign cdata = istop ? ireg : idata ; // Send buffered

always @(posedge clk)
if (! cstop && ireg [W]) // Will core consume?

ireg <= {1′b0, {W{1′bx}}}; // Yes: empty buffer
else if ( cstop && !ireg[W]) // Core stop, empty?

ireg <= idata; // Yes: load buffer

endmodule

Core Output Action

data stop data stop next

⊥ 0 ⊥ − ⊥ No-op
t 0 ⊥ − t Buffer
− 1 t 1 t Hold
⊥ 0 t 0 ⊥ Send
t 0 t ′ 0 t Pipeline

module outbuf #(parameter W=8)
(input clk ,
input [W:0] cdata ,
output cstop ,
output reg [W:0] odata,
input ostop );

initial odata = {1′b0, {W{1′bx}}}; // Empty

// Stop the core when buffer full and output not ready
assign cstop = odata[W] && ostop;

always @(posedge clk)
if (! cstop ) // Can we accept more data?

odata <= cdata; // Yes: load the buffer

endmodule

Figure 2. Circuits, transition tables, and Verilog for our input and output buffers. t denotes a token: data whose valid bit is true; ⊥ denotes the absence of
a token: data with a false valid bit, and − means the signal is ignored. Each highlighted entry in the transition tables indicates when a token is transferred.
In the Verilog, idata, cdata, buffer, and odata consist of W data bits and one valid bit—the MSB.

Cortadella et al. [5] call it “SELF,” and Li et al. [13] call it
“LID-1SS.” When the downstream receiver asserts the stop
signal, it indicates the receiver is unable to capture the token
in the current clock cycle, so the upstream transmitter needs
to hold the token and attempt to retransmit it in the next
cycle. In cycles where valid is true and stop is false, the
receiver consumes the token.

We use this protocol because of its simplicity. It provides
reliable in-order delivery of a single data stream even if the
transmitter or receiver is unwilling to communicate because
it is busy or its output channels are blocked.

3. Our Input and Output Buffers

One of our main contributions is a pair of input and
output buffers that are easy to use to implement a variety

of dataflow blocks that can be assembled into high-speed
pipelines and richer networks. Both consist of a pair of
input and output channels, each complying with the flow
control protocol. The upstream backpressure output from the
input buffer and the downstream data output from the output
buffer are each registered (i.e., driven directly from flip-
flops) so they can be chained together without introducing
arbitrary long combinational paths. Furthermore, systems
built from dataflow blocks that use our buffers do not need
any global controller, so clock frequency of these systems is
limited only by the slowest single block, not by the number
of connected blocks.

Figure 2 shows our buffers. The input buffer is on the
left; the output buffer is on the right, and “Core” denotes
the location of the logic for the dataflow block. We discuss
how to design the logic for a core starting in Section 4.



Each buffer has two ports—one input and one output—and
each port uses the same flow-control protocol. The main
difference between the two buffers is which paths are com-
binational: the input buffer has no combinational upstream
path; the output buffer has no combinational downstream
path. When used together, there is no combinational path
in either direction, so connecting blocks does not affect the
critical timing path.

In our buffers, we always treat data and its valid bit as
a bundle, which makes our circuits easier to understand and
verify. We draw these bundles as a thick line with a nearby
thin line for the valid bit. By design, our buffers keep data
linked to its valid bit to avoid inadvertently duplicating data.

The output buffer is the simpler of the two. It sends
downstream data along with its valid bit from the output
register. When the output register holds a token and the
downstream backpressure signal ostop is asserted, the regis-
ter holds its value. Otherwise, cstop is false and the output
register is loaded. By design, there is no combinational path
from the core to downstream to enable chaining.

The input buffer is more complicated. The idata input
includes both data and a valid bit; istop is the upstream
backpressure signal, driven directly by the valid bit in the
input register. Complementing the output buffer, the input
buffer has no combinational path from the core to the up-
stream stop signal (cstop), again to enable arbitrary chaining
without negatively impacting clock frequency.

The input buffer has two states: empty or holding a
token. When the register does not contain a token—its valid
bit is false—no backpressure is applied: istop remains low,
and a token on idata is routed directly to the core (cdata). If
the core indicates it can consume the token by setting cstop
false, the register holds its invalid contents. If instead the
core asserts cstop, the register loads any incoming token on
idata along with its valid bit.

If the register contains a token, istop is asserted and the
token is routed to the core on cdata. If the core sets cstop
false, the buffer will be emptied (denoted by the ⊥ input
to the mux) at the end of the cycle. Otherwise, the register
reloads its value and retains the token into the next cycle.

3.1. Proofs of the Buffers’ Correctness

Both input and output buffers preserve the sequence of
tokens presented on their inputs, which we prove below.
More specifically, no token sent or received by the protocol
is dropped, duplicated, or delivered out-of-order.

Definitions: A token is data whose associated valid bit is
true. The input sequence is the sequence of tokens on idata
in cycles where istop is false (i.e., the sequence of consumed
tokens); the core sequence is the sequence of tokens on
cdata in cycles where cstop is false; the output sequence is
the sequence of tokens on odata in cycles where ostop is
false (i.e., the sequence of emitted tokens).

Theorem 1 If the core never blocks forever—after any
cycle, cstop is eventually false—the input buffer ensures the
core sequence is equal to the input sequence.

Proof We show that each token that appears on the input
sequence appears exactly once in the core sequence and that
tokens are not reordered. We take the behavior described in
the input buffer transition table (left in Figure 2) as the
definition of the input buffer. Note that for a token t to
appear in a sequence, the valid bit must be true and stop bit
must be false. These cases are highlighted in the table.

A token that appears in the input sequence appears
exactly once in the core sequence because once it appears
in the input sequence, it will eventually appear in the core
sequence and then will never appear again because the input
buffer no longer holds the information. More specifically,
when a token appears in the input sequence, there are two
cases: in the Pass case, the token that appeared in the input
sequence appears immediately in the core sequence and is
thereafter forgotten (the buffer will hold ⊥ in the next cycle);
in the Buffer case, no token appears in the core sequence in
that cycle, but the token from the input sequence is stored
in the buffer.

In cycles where a token is in the buffer, there are two
cases: in the Hold case, no token appears on the core
sequence and the token that is in the buffer is held there; in
the Send case, the token in the buffer appears in the core
sequence and is subsequently forgotten (the buffer will hold
⊥ in the next cycle). By assumption, the Hold case cannot
occur forever (since cstop eventually becomes false), so a
token in the buffer always eventually appears in the core
sequence.

Thus, once a token has appeared in the input sequence,
it either appears immediately in the core sequence once, or
it eventually appears in the core sequence once.

Furthermore, an input token cannot overtake another.
When an input token appears, if it does not immediately
appear in the core sequence, no token may appear in the
input sequence until the cycle after the buffered token does
appear in the core sequence. When a token is in the buffer,
istop is asserted and by definition, no additional input to-
ken appears in the input sequence. Figure 3 illustrates this
behavior. 2

Theorem 2 If the downstream consumer never blocks
forever—after any cycle, ostop is eventually false—the out-
put buffer ensures the output sequence is equal to the core
sequence.

Proof Like above, we show that each token that appears
on the core sequence appears exactly once in the output
sequence and that tokens are not reordered. Again, we
reason with the behavior described in the output buffer
transition table (right in Figure 2).

There are two possibilities when a token t appears in
the core sequence. In the Buffer case, no token appears in
the output sequence but the input token t will appear on the
output data in the next cycle. In the Pipeline case, a distinct,
previously buffered token appears in the output sequence in
that cycle, but t will appear on the output data in the next
cycle.

Three things may happen when a token t appears on the
output data lines. In the Hold case, no token appears in the
output sequence (because stop is asserted) and the token
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Figure 3. Behavior of the input and output buffers: a visualization of the
proofs of of Theorems 1 & 2. Time runs from top to bottom; columns
indicate values on ports; highlighting indicates a token being transferred.
The input buffer delivers a token immediately, in the next cycle, or once
the core releases cstop. The output buffer delivers the token in the next
cycle or once the downstream receiver release ostop. Tokens may also be
transmitted in the first cycle of such a process or be received in the last
cycle of such a process.

remains on the output data lines in the next cycle. In the
Send case, the held token appears in the output sequence
but is forgotten thereafter (the output data lines will be
⊥ in the next cycle). In the Pipeline case, the held token
appears in the output sequence, the output data lines will
hold the (distinct) token that appeared in the input sequence
in this cycle, and the held token will again be forgotten.
By assumption, ostop is eventually false, so either Send or
Pipeline will occur eventually.

Thus, once a token appears in the core sequence, that
token will eventually appear in the output sequence. Also,
the output buffer forgets the token after it appears in the
output sequence.

Finally, tokens in the core sequence cannot overtake each
other. When a token appears in the core sequence, the core
sequence cannot have another token until the cycle in which
the first token appears in the output sequence (the Pipeline
case). Figure 3 illustrates this behavior. 2

During development, we also ran our buffers on ran-
domly generated test vectors (random data, valid, and stop
bits), extracted the input and output sequences, and verified
they were identical.

4. Core Logic: Unit-Rate Dataflow Blocks

Our buffers make it easy to build unit-rate dataflow
blocks—blocks that require a token on each input before
producing tokens on each output. Each such block consists
of our input and output buffers around a core: the logic
responsible for transforming inputs to outputs, which may
be combinational or hold state, and an AND gate that detects
when the block can consume inputs and produce outputs.

Figure 4 shows how to use our buffers to implement a
two-input, two-output unit-rate dataflow block; more inputs
and outputs follow the same pattern. The AND gate instructs
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FSM

fire

Figure 4. A two-input, two-output unit-rate dataflow block with state. The
Mealy-style state machine must hold its state when fire is false. Note that
the “stop” signals inside the core are active-low.
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Figure 5. A single-place buffer built from a pair of our input and output
buffers. This behaves like the relay station of Li et al. [13].

the core to “fire”—consume inputs and produce outputs—
when all the input tokens are present and none of the output
buffers are blocked. The Mealy FSM should only advance its
state when fire is true, perhaps by connecting fire to a latch
enable input on every flip-flop in the core. A combinational
block—a degenerate FSM—may ignore fire. In any case, the
FSM need not suppress spurious outputs where fire is false
because the output buffers ignore data (treat as invalid) in
those cycles.

A single-place buffer is a corner case of such blocks:
Figure 5 shows a single-place buffer that can be used to
pipeline long wires since it always takes at least one cycle
for a token to move downstream and a stop signal to move
upstream. The usual AND gate regulating firing is simplified
away by don’t-cares.

While unit-rate dataflow blocks are somewhat limited,
they form the basis of Carloni et al.’s latency-insensitive
design [4]. In LID terminology, our single-place buffer is
a “relay station” and our multi-input, multi-output unit-rate
blocks are “shells” whose cores are “pearls.”

5. Core Logic: General Dataflow Blocks

Unit-rate dataflow blocks are useful, but their “AND”
firing rule makes them limited. We designed our buffers to
support blocks with general firing rules [11]. For the unit-
rate blocks described above, the core is only required to
heed the fire signal, which abstracts all the details about
token and output buffer availability. In general, a core may
“peek” at input tokens without consuming them, choose to
consume only certain inputs, and choose to emit only certain
outputs, all depending on internal state, the presence, and
the value of input tokens.

A full discussion of the approaches, considerations, and
pitfalls of designing general dataflow blocks and the core
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Figure 6. A switch block implementation and its firing rules. When tokens
are present on both din and sel, the block transfers the token on din to d0
or d1 depending on the value of sel.

logic for them falls well outside the scope of this paper.
Below, we give some illustrative examples that are fairly
well-behaved, but general blocks present many challenges.
For example, it is easy to inadvertently build networks
that are sensitive to latency, i.e., whose functional behavior
changes dramatically with the addition of seemingly unim-
portant delays, violating a typical objective of a dataflow
methodology.

Provided the core of each dataflow block is finite-state,
dataflow systems built using our buffers are also finite-
state and thus properties such as determinism and deadlock-
freedom can always be tested through exhaustive simulation
(e.g., model-checking). In practice, however, such analysis
quickly grows impractical for larger systems. An alternative
is to follow a discipline that guarantees such emergent prop-
erties, such as Kahn’s [9], which guarantees I/O properties
are delay-invariant provided the system uses only blocking
reads on input buffers.

5.1. Switch

As an illustration of how richer blocks can be imple-
mented, consider the demultiplexing switch block described
by Lee and Parks [11]. This block has two data outputs d0
and d1, one data input din, and a Boolean select input. The
value of the token that arrives on the select input directs
the next token that arrives on the din input to either d0 or
d1. Unlike a unit-rate dataflow block, which output emits a
token depends on the value of an input.

Figure 6 illustrates how our blocks can be used to
implement switch. The datapath is simple: the data from din
is sent to both d0 and d1, but the token is never duplicated
because v0 and v1 are never true simultaneously. Instead,
this block is primarily control logic.

First, if either din or sel does not have a token, fire is
false, no input token is consumed, and both v0 and v1 are
false, so no output tokens are produced.

Now, assume din and sel both have tokens. Here, sel is
true if the data is to be sent to d1. If the d1 output buffer is
prepared to accept a token, s1 will be false so fire will be
true, setting s1 true and s0 false. Conversely, if sel is false,
s0 will reflect whether d0 is prepared to accept a token and
if so, fire will drive v0 true and v1 false.

The design of switch illustrates the general technique for
designing dataflow blocks using our buffers. The control

always @(∗) begin
cdinstop = 1; cselstop = 1; // Hold inputs
cd0data = { 1 ′b0, 8 ′bx }; // ⊥
cd1data = { 1 ′b0, 8 ′bx }; // ⊥
if ( cdindata [8] && cseldata[1] && // Din, sel = 0?

! cseldata [0] && !cd0stop ) begin
cdinstop = 0; cselstop = 0; // Consume both
cd0data = cdindata ; // Emit on D0

end else if ( cdindata [8] && cseldata[1] && // din,
cseldata [0] && !cd1stop) begin//sel=1?

cdinstop = 0; cselstop = 0; // Consume both
cd1data = cdindata ; // Emit on D1

end
end

Figure 7. Verilog for the core of the switch block with 8-bit data

logic is responsible for determining when the block can
fire—when the block has an acceptable combination of input
tokens and available output buffers. For the switch block to
fire, the din and sel inputs and either the d0 or d1 output
must be available.

Such control logic is easy code in an HDL: by default,
no input tokens should be consumed and no output tokens
emitted, but if the input tokens’ presence and values meet a
firing condition, inputs are consumed and outputs produced.

Figure 7 illustrates a natural way to code the core of
the switch block. By default, all inputs are told to hold any
incoming tokens and all outputs are told not to emit anything
(i.e., given ⊥ tokens). Then each firing condition is tested,
which includes checking for the presence of input tokens
and space for output tokens. The first test checks if din has
a token, sel has a 0 token, and output d0 can accept a token.
If so, tokens on din and sel are consumed and the token on
din is sent on d0. Note that the predicate guarantees all these
communication actions can take place. The second rule is
similar except it checks for the presence of a 1 token on sel
and routes the incoming token to d1.

5.2. Fork and Eagerness

A fork block has one input and multiple outputs. Each
input token is duplicated and sent on every output. A
straightforward implementation fires only when the input
token is available and every output is ready to accept data.
Figure 8 shows code for a three-output fork.

While easily coded, such a strict implementation is con-
servative about emitting data and may need more buffering
to avoid needless deadlocks. Specifically, although outputs
could be generated when the input token has arrived and any
output is free, this implementation waits until every output
is free.

Our buffers allow the core to “peek” at an input token
without consuming it, enabling a less conservative firing
policy at the expense of a more complicated core. Once
an input token has arrived, the core can start immediately



always @(∗) begin
cistop = 1; // Hold input
co1data = {1′b0, 8 ′bx}; // output1: ⊥
co2data = {1′b0, 8 ′bx}; // output2: ⊥
co3data = {1′b0, 8 ′bx}; // output3: ⊥
if ( cidata [8] && !co1stop && // Input available,

!co2stop && !co3stop) begin // outputs free?
cistop = 0; // Consume input
co1data = cidata ; // Send token
co2data = cidata ; // on all three
co3data = cidata ; // outputs

end
end

Figure 8. Verilog for the core of a conservative three-output fork block that
waits for all outputs to have space before emitting anything

reg [3:1] waiting = 3 ′b111, willWait ;
always @(posedge clk) waiting <= willWait;

always @(∗) begin
cistop = 1; // Hold the input
co1data = {1′b0, 8 ′bx}; // ⊥
co2data = {1′b0, 8 ′bx}; // ⊥
co3data = {1′b0, 8 ′bx}; // ⊥
if ( cidata [8]) begin // Has the input arrived?

willWait = waiting & {co3stop, co2stop , co1stop};
if ( waiting [1] && !co1stop) co1data = cidata ;
if ( waiting [2] && !co2stop) co2data = cidata ;
if ( waiting [3] && !co3stop) co3data = cidata ;
if ( !(| willWait ) ) begin // Still waiting?

cistop = 0; // No: consume the input
willWait = 3 ′b111; // Wait next time

end
end else willWait = 3 ′b111; // Wait next time

end

Figure 9. Verilog for the core of an eager three-output fork block that starts
trying to emit outputs as soon as it has an input

sending it to open outputs, but the core needs to remember
to which outputs it has already sent the token to avoid
inadvertently sending multiple copies of the token on the
same output.

Figure 9 illustrates an eager fork block that starts sending
the input token as soon as it can but only consumes the token
once all the outputs have been sent. The important difference
here is that the core needs to track additional state: each bit
of waiting indicates whether the core is waiting to send
a token on that output. Each bit in the willWait vector
indicates whether the output still needs to wait after the
current cycle—when it was waiting and the output is not
yet available. When every bit in willWait is false, a token
has been sent on every output and the token is consumed.

≤ 10 ≤ 11 ≤ 42

0 1 2 3

From Memory

To Memory

Figure 10. A range partitioning pipeline configured with splitters (10, 11,
42). Data is loaded from memory and flows right until it satisfies the
predicate, then it falls, is tagged with the bucket number, and flows left to
memory.

6. An Application: Partitioning for Database
Accelerators

Our need for efficient, flexible dataflow blocks arose as
we were developing a specialized accelerator for database
processing [16]. We believe the road to greater silicon
efficiency lies in specialization: instead of one-size-fits-all
general-purpose processors, the world needs highly efficient
application-specific processors that can be powered off when
unused. Quickly designing such processors correctly is not
easy; composable building blocks such as ours helps to
simplify the process.

When manipulating large datasets, partitioning is often
critical for bring data sizes under control. Modern databases
routinely partition data to make tasks possible and efficient.

The pipeline we present here performs range parti-
tioning: it divides integer data into buckets identified by
contiguous, non-overlapping ranges whose boundaries are
defined by splitters. Figure 10 shows an example of our
pipeline configured with the three splitters (10, 11, 42). This
divides the data into four buckets labeled ≤ 10, 10< x≤ 11,
11 < x≤ 42, and > 42.

Our pipeline consists of two types of blocks. The split
blocks—those on the top row—compare the key of each
incoming token (e.g., 32 bits of a 256-bit payload) with
the block’s splitter. If the key is less than or equal to
the splitter, the token is sent south and tagged with the
number of its bucket. Otherwise, the token is sent east to
the next split block. Each block on the bottom row performs
a nondeterministic merge of tokens from its two inputs,
sending the now-tagged tokens west toward memory. The
merge blocks need an arbitration rule for when there are
tokens on both inputs; our current block simply prefers
its north input over its east and could be modified to be
more fair, but the specific policy does not matter for this
application provided every input token is routed eventually.

Testing many predicates simultaneously provides the
parallelism in this pipeline; keeping the data local improves
performance. A lower-latency parallel architecture might
distribute data to all predicate tests simultaneously, but such
a broadcast would lead to longer wires and lower overall
throughput.

The merge blocks makes the token sequence generated
by this pipeline potentially nondeterministic, but determin-
ism can be recovered by grouping output tokens by their



module split #(parameter TAG = 0, W = 64)
(input clk , input [31:0] splitter ,
input [W:0] wdata, output wstop,
output [W:0] edata , input estop ,
output [W+8:0] sdata, input sstop );

wire [W:0] cwdata; reg cwstop;
inbuf #(W) ib (clk , wdata, wstop, cwdata, cwstop);

reg [W:0] cedata; wire cestop ;
outbuf #(W) o1(clk , cedata , cestop , edata , estop );
reg [W+8:0] csdata; wire csstop ;
outbuf #(W+8) o2(clk, csdata , csstop , sdata , sstop );

always @(∗) begin
cwstop = 1; // do not consume
cedata = {1′b0, {W{1′bx}}}; // ⊥
csdata = {1′b0, 8 ′bx, {W{1′bx}}};
if (cwdata[W]) // input token available?

if (cwdata[31:0] <= splitter ) begin // in range?
if (! csstop ) begin // can we send south?

csdata = {1′b1, TAG[7:0], cwdata[W−1:0]};//tag
cwstop = 0; // consume input

end
end else if (! cestop ) begin // can we send east?

cedata = cwdata; // send east
cwstop = 0; // consume input

end
end
endmodule

Figure 11. The split block: if the token from the west input is less than
or equal to the splitter, tag the token and send it south, otherwise, send it
east.

tags. In our application, we assume data will be read in
bursts from memory and clustered back into bursts according
to their tags before being sent back to memory.

Figure 11 and Figure 12 show the Verilog for the body
of the split and merge blocks. These are simple but were
fussy to code. It is important to be disciplined about names
and structure. Give each input and output a simple name
and prefix it with “c” to denote the signals the combina-
tional core may use. Instantiate each input and output port,
connecting each between module ports and the “c” signals
for the combinational core. In the combinational core block,
set all input stop signals to 1 and all output token values to
⊥ as a default. Then, check input tokens, their values, and
finally the availability of output ports before sending data
on those outputs and consuming input tokens.

7. Experimental Results

In Verilog, we coded a parametric version of the range
paritioner pipeline shown in Figure 10 that uses the split,
merge, inbuf, and outbuf code presented in Figures 11, 12,
and 2. We synthesized pipelines of various sizes using

module merge #(parameter W=72)
(input clk ,
input [W:0] ndata , output nstop ,
input [W:0] edata , output estop ,
output [W:0] wdata, input wstop);

wire [W:0] cndata; reg cnstop ;
inbuf #(W) i1(clk , ndata , nstop , cndata , cnstop );
wire [W:0] cedata; reg cestop ;
inbuf #(W) i2(clk , edata , estop , cedata , cestop );
reg [W:0] cwdata; wire cwstop;
outbuf #(W) ob(clk, cwdata, cwstop, wdata, wstop);

always @(∗) begin
cnstop = 1; cestop = 1; // Do not consume
cwdata = {1′b0, {W{1′bx}}}; // ⊥
if (cndata[W] && !cwstop) begin // North token?

cwdata = cndata ; cnstop = 0; // send west
end else if ( cedata [W] && !cwstop) begin // east?

cwdata = cedata ; cestop = 0; // send west
end

end
endmodule

Figure 12. The merge block: if a token is available from the north, pass it
west. Otherwise, if a token is available from the east, pass it west.

TABLE 1. SYNTHESIS RESULTS FOR THE RANGE PARTITIONING

PIPELINE

Splitters Token Fmax Area Resources

Bits MHz ALMs % Registers

2 32 167 189 1 414
2 64 157 350 1 798

2 128 152 672 2 1573
32 128 137 10821 26 25536
64 128 140 21704 52 51168

4 64 158 700 2 1621
8 64 145 1409 3 3261

16 64 147 2826 7 6559
32 64 144 5682 14 13148
64 64 138 11404 27 26414

128 64 140 22914 55 53087

Quartus 14.0 targeting an Altera Cyclone V (5CSXFC6D6F31C8ES) FPGA:
41910 ALMs (Adaptive Logic Modules: 7-input lookup tables).
Bits is the width of each data token (only first 32 are considered)
Fmax is the maximum operating frequency.
Regs. is the number of registers in the design.
166 MHz target clock rate.

Altera’s Quartus and targeted a mid-speed Cyclone V FPGA

that is attractive for our application because it also has
hard ARM processor cores and DRAM controllers, making it
a good vehicle for experimenting with application-specific
accelerators. For reference, the (customized) memory and
multiplier blocks on these chips can run at about 300 MHz.

Table 1 shows the results of synthesizing pipelines of
various depths and numbers of bits. Fmax is the main figure



of merit: the highest frequency at which the FPGA can
run under worst-case conditions (85C, 1.1V). The “ALMs”
column gives a rough measure of area: a count of how
many of Altera’s “Adaptive Logic Modules,” primarily 8-
input lookup tables that form the bulk of the FPGA fabric,
were used. This particular chip had 41910 available ALMs;
the percentage number in the next column lists the fraction
of available ALMs consumed by our design. Finally, the
“Regs” column lists the number of registers (flip-flops) in
the design: each ALM has four available.

The operating frequency of our pipelines are largely
independent of their size, as expected. At most, we see a
14% drop (158 MHz to 140) over a 32× increase in pipeline
size (4 to 128 splitters with 64-bit tokens). We suspect this
may be due to the synthesis tool, or perhaps its concern
about clock skew as the design swells from a minuscule
fraction of the chip to over half. The effect is smaller for
a comparable increase in a wider pipeline (2 to 64 splitters
with 128-bit tokens). That the frequency does not change
monotonically with pipeline size also suggests a certain level
of randomness in the synthesis tool. The resource usage is
also predictably linear.

8. Related Work

Dataflow has been implemented in hardware for a long
time, but we were particularly inspired by the latency-
insensitive design technique of Carloni et al. [4], which
advocates partitioning systems into blocks that communicate
exclusively through buffers to eliminate long wires. The LID

approach, however, starts from a synchronous design that
implicitly assumes each wire always communicates one bit
per clock cycle. While this enables an existing design to
be made latency-insensitive, it often leads to unnecessary
communication and lower performance. It is possible to heed
don’t-care information and complete computation before un-
needed tokens are available [12], but those tokens must still
be transmitted. While we adopt the buffering methodology
of LID and one of its protocols [13], we expose the notion
of tokens and backpressure to the designer, raising the level
of abstraction and enabling better performance.

Cortadella et al.’s Synchronous Elastic Architectures [5]
combine ideas from LID and asynchronous logic. They
propose a lightweight latch-based approach for introducing
latency, but, like LID, effectively only support unit-rate
dataflow (i.e., that can be modeled with marked graphs) and
thus cannot describe the richer dataflow blocks that we can.
Their latch-based approach could probably be applied in our
setting, but we have not attempted to do so, in part because
we have been targeting FPGAs.

Janneck et al. [6, 7, 1] propose the CAL language for
describing dataflow blocks and a system for synthesizing it
into hardware. Siret et al. [14] take a similar approach. Like
us, they implement robust, high-speed dataflow networks in
hardware. However, they use relatively heavyweight FIFOs
for inter-block communication. We were unable to obtain
their tools to perform a head-to-head comparison of their

protocols and buffers, but we imagine our work might
integrate nicely with theirs.

Williamson and Lee [15] consider synthesizing SDF

graphs which, like the unit-rate graphs of LID, cannot pro-
duce or consume tokens based on data. They also gave
themselves the bigger challenge of sharing physical blocks
across multiple logical operations in a source graph, which
we do not consider.

Jung et al. [8] also synthesize SDF graphs into hardware,
which allows them to know the schedule of operations at
compile time and consider things like performing multiple
operations in a single clock cycle. Our technique is much
more coarse-grain, but allows data-dependent operation,
which it outside the scope of SDF.

9. Conclusions and Future Work

We presented a technique for building dataflow networks
in hardware that allows a designer to express the function of
each block just in terms of the production of output tokens
and the consumption of input tokens, something that be
merely a combinational function. Adding our buffers to the
inputs and outputs of such blocks eliminates combinational
paths between ports, allowing the blocks to be chained
together into arbitrarily large networks without reducing the
clock rate. We gave proofs that our input and output blocks
deliver data reliably without duplicating or dropping tokens.

We showed how to use our buffers to implement
pipelined communication channels, unit-rate dataflow blocks
(e.g., like those in latency insensitive design), and richer
dataflow blocks that consider data values when deciding
which tokens to consume and emit.

The need for specialized hardware to accelerate database
applications was the original motivation for this work. We
showed how our technique could be used to produce a
high-speed pipeline for performing range partitioning—a
common core operation in databases. We implemented this
pipeline on an FPGA and showed that its maximum clock
rate dropped only slightly as the pipeline grew larger.

For the sake of exposition, our range partitioning
pipeline is substantially simplified from one we eventually
plan to use in practice. One issue is completion detection:
this pipeline is intended to be used on multiple tables, each
with their own splitters. It will be necessary to know when
all tokens have trickled out of the pipeline and written back
to memory so the splitters can be change and the next
partitioning operation started. We envision sending a sentinel
token that is copied to both outputs of each split block and
merged back into a single token by each merge block.

We also did not address how the splitters are to be loaded
into the pipeline. Because this configuration data is only
loaded per table instead of per token, a shift register without
flow control would suffice.

Another realistic extension would be to adapt the merge
blocks to handle memory write bursts. Tokens would accu-
mulate on the north input of each merge block until there
were enough for a DRAM write burst, then the entire burst



would proceed through the pipeline to the memory and be
written as a single unit.

While range partitioning is a useful, common operation,
our pipeline structure is easily augmented to perform other
useful operations. Expanding the range of operations the
pipeline should perform without it growing slow and overly
complicated is ongoing work.

Our approach is not directly applicable to the imple-
mentation of multi-rate dataflow networks such as SDF [10]
because our buffers only consider transferring single tokens,
but it is well-suited to the periodic binary firing rules of
cyclo-static dataflow [2], a technique familiar in hardware
dataflow implementations [3].

Going forward, we envision a tool that takes high-level
specifications of dataflow blocks and produces circuits like
Janneck et al. [7]. Of course, we would use our buffers,
but we also want to consider when they can be avoided.
Clustering dataflow blocks into larger regions that operate
in a single cycle could produce more efficient designs,
provided the blocks do not grow big enough to impact
the maximum clock rate. We plan to develop a clustering
algorithm.
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