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Silicon technology will continue to provide an exponential increase in the availability of raw tran-
sistors. Effectively translating this resource into application performance, however, is an open
challenge that conventional superscalar designs will not be able to meet. We present WaveScalar
as a scalable alternative to conventional designs. WaveScalar is a dataflow instruction set and
execution model designed for scalable, low-complexity/high-performance processors. Unlike previ-
ous dataflow machines, WaveScalar can efficiently provide the sequential memory semantics that
imperative languages require. To allow programmers to easily express parallelism, WaveScalar
supports pthread-style, coarse-grain multithreading and dataflow-style, fine-grain threading. In
addition, it permits blending the two styles within an application, or even a single function.

To execute WaveScalar programs, we have designed a scalable, tile-based processor architecture
called the WaveCache. As a program executes, the WaveCache maps the program’s instructions onto
its array of processing elements (PEs). The instructions remain at their processing elements for
many invocations, and as the working set of instructions changes, the WaveCache removes unused
instructions and maps new ones in their place. The instructions communicate directly with one
another over a scalable, hierarchical on-chip interconnect, obviating the need for long wires and
broadcast communication.

This article presents the WaveScalar instruction set and evaluates a simulated implementation
based on current technology. For single-threaded applications, the WaveCache achieves perfor-
mance on par with conventional processors, but in less area. For coarse-grain threaded applica-
tions the WaveCache achieves nearly linear speedup with up to 64 threads and can sustain 7–14
multiply-accumulates per cycle on fine-grain threaded versions of well-known kernels. Finally, we
apply both styles of threading to equake from Spec2000 and speed it up by 9x compared to the serial
version.
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1. INTRODUCTION

It is widely accepted that Moore’s Law will hold for the next decade. How-
ever, although more transistors will be available, simply scaling-up current
architectures will not convert them into commensurate increases in perfor-
mance [Agarwal et al. 2000]. This resulting gap between the increases in per-
formance we have come to expect and those that larger versions of existing
architectures will be able to deliver will force engineers to search for more scal-
able processor architectures.

Three problems contribute to this gap: (1) the ever-increasing disparity be-
tween computation and communication performance, specifically, fast transis-
tors but slow wires; (2) the increasing cost of circuit complexity, leading to longer
design times, schedule slips, and more processor bugs; and (3) the decreasing
reliability of circuit technology caused by shrinking feature sizes and contin-
ued scaling of the underlying material characteristics. In particular, modern
superscalar processor designs will not scale because they are built atop a vast
infrastructure of slow broadcast networks, associative searches, complex con-
trol logic, and centralized structures.

We propose a new instruction set architecture (ISA), called WaveScalar
[Swanson et al. 2003], that addresses these challenges by building on the
dataflow execution model [Dennis and Misunas 1975]. The dataflow execution
model is well-suited to running on a decentralized, scalable processor because
it is inherently decentralized. In this model, instructions execute when their
inputs are available, and detecting this condition can be done locally for each
instruction. The global coordination upon which the von Neumann model
relies, in the form of a program counter, is not required. In addition, the
dataflow model allows programmers and compilers to express parallelism
explicitly, instead of relying on the underlying hardware (e.g., an out-of-order
superscalar) to extract it.

WaveScalar exploits these properties of the dataflow model, and also ad-
dresses a long-standing deficiency of dataflow systems. Previous dataflow sys-
tems could not efficiently enforce the sequential memory semantics that imper-
ative languages, such as C, C++, and Java, require. Instead, they used special
dataflow languages that limited their usefulness. A recent ISCA keynote ad-
dress [Arvind 2005] noted that if dataflow systems are to become a viable alter-
native to the von Neumann status quo, they must enforce sequentiality on mem-
ory operations without severely reducing parallelism among other instructions.
WaveScalar addresses this challenge with a memory ordering scheme, called
wave-ordered memory, that efficiently provides the memory ordering needed by
imperative languages.

Using this memory ordering scheme, WaveScalar supports conven-
tional single-threaded and pthread-style multithreaded applications. It also
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efficiently supports fine-grain threads that can consist of only a handful of in-
structions. Programmers can combine these different thread models in the same
program, or even in the same function. Our data shows that applying diverse
styles of threading to a single program can expose significant parallelism in
code that would otherwise be difficult to fully parallelize.

Exposing parallelism is only the first task. The processor must then trans-
late this parallelism into performance. We exploit WaveScalar’s decentralized
dataflow execution model to design the WaveCache, a scalable, decentralized
processor architecture for executing WaveScalar programs. The WaveCache
has no central processing unit. Instead, it consists of a sea of processing nodes
in a substrate that effectively replaces the central processor and instruction
cache of a conventional system. The WaveCache loads instructions from mem-
ory and assigns them to processing elements for execution. The instructions
remain at their processing elements for a large number, potentially millions,
of invocations. As the working set of instructions for the application changes,
the WaveCache evicts unneeded instructions and loads the necessary ones into
vacant processing elements.

This article describes and evaluates the WaveScalar ISA and WaveCache ar-
chitecture. First, we describe those aspects of WaveScalar’s ISA and the Wave-
Cache architecture that are required for executing single-threaded applications,
including the wave-ordered memory interface. We evaluate the performance of
a small, simulated WaveCache on several single-threaded applications. Our
data demonstrates that this WaveCache performs comparably to a modern out-
of-order superscalar design, but requires 20% less silicon area.

Next, we extend WaveScalar and the WaveCache to support conventional
pthread-style threading. The changes to WaveScalar include lightweight
dataflow synchronization primitives and support for multiple, independent se-
quences of wave-ordered memory operations. The multithreaded WaveCache
achieves nearly linear speedup on the six Splash2 parallel benchmarks that we
use.

Finally, we delve into WaveScalar’s dataflow underpinnings, the advantages
they provide, and how programs can combine them with conventional multi-
threading. We describe WaveScalar’s “unordered” memory interface and show
how it can be used with fine-grain threading to reveal substantial parallelism.
Fully utilizing these techniques requires a custom compiler which is not yet
complete, so we evaluate these two features by hand-coding three common ker-
nels and rewriting part of the equake benchmark to use a combination of fine-
and coarse-grain threading styles. The results demonstrate that these tech-
niques speed-up the kernels by between 16 and 240 times and equake by a
factor of 9, compared to the serial versions.

The rest of this article is organized as follows. Sections 2 and 3 describe
the single-threaded WaveScalar ISA and WaveCache architecture, respectively.
Section 4 then evaluates them. Section 5 describes WaveScalar’s coarse-grain
threading facilities and the changes to the WaveCache that support them. Sec-
tion 6 presents WaveScalar’s dataflow-based facilities that support fine-grain
parallelism and illustrates how we can combine both threading styles to en-
hance performance. Finally, Section 7 concludes.
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2. SINGLE-THREADED WAVESCALAR

Although the dataflow model that WaveScalar uses is fundamentally differ-
ent than the von Neumann model that dominates conventional designs, both
models accomplish many of the same tasks in order to execute single-threaded
programs written in conventional programming languages. For example, both
must determine which instructions to execute and provide a facility for condi-
tional execution; they must pass operands from one instruction to another and
they must access memory.

For many of these tasks, WaveScalar borrows from previous dataflow ma-
chines. Its interface to memory, however, is unique and one of its primary con-
tributions to dataflow computing. The WaveScalar memory interface provides
an efficient method for encoding memory ordering information in a dataflow
model, enabling efficient execution of programs written in imperative program-
ming languages. Most earlier dataflow machines could not efficiently execute
codes written in imperative languages because they could not easily enforce the
memory semantics that these programs require.

To provide context for our description, we first describe how the von Neumann
model accomplishes the tasks previously outlined and why the von Neumann
model is inherently centralized. Then we describe how WaveScalar’s model ac-
complishes the same goals in a decentralized manner and how WaveScalar’s
memory interface works. WaveScalar’s decentralized execution model provides
the basis for the decentralized, general-purpose hardware architecture pre-
sented in Section 3.

2.1 The von Neumann Model

Von Neumann processors represent programs as a list of instructions that re-
side in memory. A program counter (PC) selects instructions for execution by
stepping from one memory address to the next, causing each instruction to ex-
ecute in turn. Special instructions can modify the PC to implement conditional
execution, function calls, and other types of control transfer.

In modern von Neumann processors, instructions communicate with one an-
other by writing and reading values in the register file. After an instruction
writes a value into the register file, all subsequent instructions that read the
value are data-dependent on the writing instruction.

To access memory, programs issue load and store instructions. A key tenet
of the von Neumann model is the set of memory semantics it provides in which
loads and stores occur (or appear to occur) in the order in which the PC fetched
them. Enforcing this order is required to preserve read-after-write, write-after-
write, and write-after-read dependences between instructions. Modern imper-
ative languages, such as C, C++, or Java, provide essentially identical memory
semantics and rely on the von Neumann architecture’s ability to implement
these semantics efficiently.

At its heart, the von Neumann model describes execution as a linear central-
ized process. A single program counter guides execution and there is always
exactly one instruction that, according to the model, should execute next. This
is both a strength and a weakness. On one hand, it makes control transfer easy,
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tightly bounds the amount of state that the processor must maintain, and pro-
vides a simple set of memory semantics. History has also demonstrated that
constructing processors based on the model is feasible (and extremely prof-
itable!). On the other hand, the model expresses no parallelism. While the per-
formance of its processors has improved exponentially for over three decades,
continued scalability is uncertain.

2.2 WaveScalar’s ISA

The dataflow execution model has no PC to guide instruction fetch and memory
ordering and no register file to serve as a conduit of data values between
dependent instructions. Instead, it views instructions as nodes in a dataflow
graph, which only execute after they have received their input values. Memory
operations execute in the same data-driven fashion, which may result in their
being executed out of the program’s linear order. However, although the model
provides no total ordering of a program’s instructions, it does enforce the
partial orders that a program’s dataflow graph defines. Since individual partial
orders are data-independent, they can be executed in parallel, providing the
dataflow model with an inherent means of expressing parallelism of arbitrary
granularity. In particular, the granularity of parallelism is determined by the
length of a data-dependent path. For all operations, data values are passed
directly from producer to consumer instructions without intervening accesses
to a register file.

Dataflow’s advantages are its explicit expression of parallelism among
dataflow paths and its decentralized execution model that obviates the need
for a program counter or any other centralized structure to control instruction
execution. However, these advantages do not come for free. Control transfer is
more expensive in the dataflow model, and the lack of a total order on instruc-
tion execution makes it difficult to enforce the memory ordering that impera-
tive languages require. WaveScalar handles control using the same technique
as previous dataflow machines (described in Section 2.2.2), but overcomes the
problem of memory access order with a novel architectural technique called
wave-ordered memory [Swanson et al. 2003] (described in Section 2.2.5). Wave-
ordered memory essentially creates a “chain” of dependent memory operations
at the architectural level; the hardware then guarantees that the operations
execute in the order the chain defines.

Next we describe the WaveScalar ISA in detail. Much of the information is
not unique to WaveScalar and reflects its dataflow heritage. We present it here
for completeness and to provide a thorough context for the discussion of memory
ordering, which is WaveScalar’s key contribution to dataflow instructions sets.
Readers already familiar with dataflow execution could skim Sections 2.2.1,
2.2.2, and 2.2.4.

2.2.1 Program Representation and Execution. WaveScalar represents pro-
grams as dataflow graphs. Each node in the graph is an instruction, and the
arcs between nodes encode static data dependences (i.e., dependences that are
known to exist at compile time) between instructions. Figure 1 shows a simple
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Fig. 1. A simple dataflow fragment: (a) a simple program statement; (b) its dataflow graph; and
(c) the corresponding WaveScalar assembly. The order of the WaveScalar assembly statements is
unimportant, since they will be executed in dataflow fashion.

piece of code, its corresponding dataflow graph, and the equivalent WaveScalar
assembly language.

The mapping between the drawn graph and the dataflow assembly language
is simple: Each line of assembly represents an instruction, and the arguments
to the instructions are dataflow edges. Outputs precede the “←”. The assembly
code resembles RISC-style assembly but differs in two key respects. First,
although the dataflow edges syntactically resemble register names, they do not
correspond to a specific architectural entity. Consequently, like pseudoregisters
in a compiler’s program representation, there can be an arbitrary number
of them. Second, the order of instructions does not affect their execution,
since they will be executed in dataflow fashion. Each instruction does have a
unique address, however, used primarily for specifying function call targets
(see Section 2.2.4). As in assembly languages for von Neumann machines, we
can use labels (e.g., begin in the figure) to refer to specific instructions. We
can also perform arithmetic on labels. For instance, begin +1 would be the
SUBTRACT instruction.

Unlike the PC-driven von Neumann model, execution of the dataflow graph
is data-driven. Instructions execute according to the dataflow firing rule which
stipulates that an instruction can fire at any time after values arrive on all of its
inputs. Instructions send the values they produce along arcs in the program’s
dataflow graph to their consumer instructions, causing them to fire in turn.
In Figure 1, once inputs A and B are ready, the ADD can fire and produce
the lefthand input to the DIVIDE. Likewise, once C is available, the SUBTRACT

computes the other input to the DIVIDE instruction. The DIVIDE then executes
and produces D.

The dataflow firing rule is inherently decentralized because it allows each
instruction to act autonomously, waiting for inputs to arrive and generating
outputs. Portions of the dataflow graph that are not explicitly data-dependent
do not communicate at all.

2.2.2 Control Flow. Dataflow’s decentralized execution algorithm makes
control transfers more difficult to implement. Instead of steering a single PC
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Fig. 2. Implementing control in WaveScalar: (a) an IF-THEN-ELSE construct and equivalent
dataflow representations; (b) STEER instructions (triangles labeled “s”) ensure that only one side of
the branch executes, while (c) computes both sides and a φ instruction selects the result to use.

through the executable so that the processor executes one path instead of the
other, WaveScalar steers values into one part of the dataflow graph and prevents
them from flowing into another. It can also use predication to perform both
computations and later discard the results on the wrong path. In both cases,
the dataflow graph must contain a control instruction for each live value, which
is a source of some overhead in the form of extra static instructions.

WaveScalar uses STEER instructions to steer values to the correct path and φ

instructions for predication. The STEER [Culler et al. 1991] instruction takes an
input value and a Boolean output selector. It directs the input to one of two pos-
sible outputs depending on the selector value, effectively steering data values
to the instructions that should receive them. Figure 2(b) shows a simple con-
ditional implemented with STEER instructions. STEER instructions correspond
most directly to traditional branch instructions, and are required for imple-
menting loops. In many cases a STEER instruction can be combined with a normal
arithmetic operation. For example, ADD-AND-STEER takes three inputs, namely a
predicate and two operands, and steers the result depending on the predicate.
WaveScalar provides a steering version for all one- and two-input instructions.

The φ instruction [Cytron et al. 1991] takes two input values and a Boolean
selector input and, depending on the selector, passes one of the inputs to its
output. Moreover, φ instructions are analogous to conditional moves and provide
a form of predication. They are desirable because they remove the selector input
from the critical path of some computations and therefore increase parallelism.
They are also wasteful, however, because they discard the unselected input.
Figure 2(c) shows φ instructions in action.

2.2.3 Loops and Waves. The STEER instruction may appear to be sufficient
for WaveScalar to express loops, since it provides a basic branching facility.
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Fig. 3. Loops in WaveScalar: (a) a simple loop; (b) a naive, slightly broken dataflow implementa-
tion; and (c) the correct WaveScalar implementation.

However, in addition to branching, dataflow machines must also distinguish
dynamic instances of values from different iterations of a loop. Figure 3(a) shows
a simple loop that illustrates both the problem and WaveScalar’s solution.

Execution begins when data values arrive at the CONST instructions, which
inject zeros into the body of the loop, one for sum and one for i (Figure 3(b)).
On each iteration through the loop, the left side updates sum and the right side
increments i and checks whether it is less than 5. For the first five iterations
(i = 0 . . . 4), p is true and the STEER instructions steer the new values for sum
and i back into the loop. On the last iteration, p is false, and the final value of
sum leaves the loop via the sum out edge. Since i is dead after the loop, the false
output of the righthand-side STEER instruction produces no output.

The problem arises because the dataflow execution model makes no guaran-
tee about how long it takes for a data value to flow along a given dataflow arc. If
sum first takes a long time to reach the ADD instruction, the right-side portion
of the dataflow graph could run ahead of the left, generating multiple values on
i backedge and p. How would the ADD and STEER instructions on the left know
which of these values to use? In this particular case, the compiler could solve
the problem by unrolling the loop completely, but this is not always possible
nor wise.

Previous dataflow machines provided one of two solutions. In the first, static
dataflow [Dennis and Misunas 1975; Davis 1978], only one value is allowed on
each arc at any time. In a static dataflow system, the dataflow graph as shown
works fine. The processor would use back-pressure to prevent the COMPARE and
INCREMENT instructions from producing a new value before the old values had
been consumed. While this restriction resolves the ambiguity between differ-
ent value instances, it also reduces parallelism by preventing multiple itera-
tions of a loop from executing simultaneously, and makes recursion difficult to
support.
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A second model, dynamic dataflow [Shimada et al. 1986; Gurd et al. 1985;
Kishi et al. 1983; Grafe et al. 1989; Papadopoulos and Culler 1990], tags each
data value with an identifier and allows multiple values to wait at the input
to an instruction. The dataflow firing rule is modified so that an instruction
fires only when tokens with matching tags are available on all of its inputs.1

The combination of a data value and its tag is called a token. WaveScalar is a
dynamic dataflow architecture.

Dynamic dataflow architectures differ in how they manage and assign tags
to values. In WaveScalar the tags are called wave numbers [Swanson et al.
2003]. We denote a WaveScalar token with wave number w and value v as w.v.
Instead of assigning different wave numbers to different instances of specific in-
structions (as did most dynamic dataflow machines), WaveScalar assigns them
to compiler-delineated portions of the dataflow graph, called waves. Waves are
similar to hyperblocks [Mahlke et al. 1992], but are more general, since they can
both contain control-flow joins and have more than one entrance. They cannot
contain loops. Figure 3(c) shows the example loop divided into waves (as shown
by dotted lines). At the top of each wave is a set of WAVE-ADVANCE instructions
(small diamonds), each of which increments the wave number of the value that
passes through it.

Assume that the code before the loop is wave number 0. When the code
executes, the two CONST instructions will produce 0.0 (wave number 0, value 0).
The WAVE-ADVANCE instructions will take these as input and each will output
1.0, which will propagate through the body of the loop as before. At the end of
the loop, the righthand-side STEER instruction will produce 1.1 and pass it back
to WAVE-ADVANCE at the top of its side of the loop, which will then produce 2.1.
A similar process takes place on the left side of the graph. After five iterations,
the left STEER instruction produces the final value of sum: 5.10, which flows
directly into WAVE-ADVANCE at the beginning of the follow-on wave. With the
WAVE-ADVANCE instructions in place, the right side can run ahead safely, since
instructions will only fire when the wave numbers in operand tags match. More
generally, wave numbers allow instructions from different wave instances, in
this case iterations, to execute simultaneously.

In addition to allowing WaveScalar to extract parallelism, wave numbers
also play a key role in enforcing memory ordering (see Section 2.2.5).

2.2.4 Function Calls. Function calls on a von Neumann processor are
fairly simple: The caller saves “caller saved” registers, pushes function argu-
ments and the return address onto the stack (or stores them in specific reg-
isters), and then uses a jump instruction to set the PC to the address of the
beginning of the called function, triggering its execution.

Being a dataflow architecture, WaveScalar must follow a slightly different
convention. Since it has no registers, it does not need to preserve register val-
ues. It must, however, explicitly pass arguments and a return address to the

1The execution model does not specify where the data values are stored nor how matching takes
place. Efficiently storing and matching input tokens is a key challenge in dynamic dataflow archi-
tecture, and Section 3 discusses this.
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Fig. 4. A function call: (b) the dataflow graph for (a) a call to a simple function. The lefthand-side
of the dataflow graph uses INDIRECT-SEND instructions to call function foo on the right. The dashed
lines show data dependences that WaveScalar must resolve at runtime. The immediate values on
the trio of INDIRECT-SEND instructions are offsets from the first instruction in foo.

function and trigger its execution. Passing arguments creates a data depen-
dence between the caller and callee. For indirect functions, these dependences
are not statically known and therefore the static dataflow graph of the appli-
cation does not contain them. Instead, WaveScalar provides a mechanism to
send a data value to an instruction at a computed address. The instruction that
allows this is called INDIRECT-SEND.

INDIRECT-SEND takes as input the data value to send, a base address for the
destination instruction (usually a label), and the offset from that base (as an
immediate). For instance, if the base address is 0x1000, and the offset is 4,
INDIRECT-SEND sends the data value to the instruction at 0x1004.

Figure 4 contains the dataflow graph for a small function and a call site.
Dashed lines in the graphs represent the dependences that exist only at run-
time. The LANDING-PAD instruction, as its name suggests, provides a target for
a data value sent via INDIRECT-SEND. To call the function, the caller uses three
INDIRECT-SEND instructions: two for the arguments A and B and one for the re-
turn address, which is the address of the return LANDING-PAD (label ret in the
figure). Another INDIRECT-SEND is used to return from the function.

When the values arrive at foo, the LANDING-PAD instructions pass them to
WAVE-ADVANCE instructions that, in turn, forward them into the function body
(the callee immediately begins a new wave). Once the function is finished, per-
haps having executed many waves, foo uses a single INDIRECT-SEND to return
the result to the caller’s LANDING-PAD instruction. After the function call, the
caller starts a new wave using a WAVE-ADVANCE.

2.2.5 Memory Ordering. Enforcing imperative language memory seman-
tics is one of the key challenges that has prevented dataflow processing from
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Fig. 5. Program order. The dashed line represents an implicit potential data dependence between
the store and load instructions that conventional dataflow instruction sets have difficulty express-
ing. Without the dependence, the dataflow graph provides no ordering relationship between the
memory operations.

becoming a viable alternative to the von Neumann model. Since dataflow ISAs
only enforce the static data dependences in a program’s dataflow graph, they
have no mechanism ensuring that memory operations occur in program order.
Figure 5 shows a dataflow graph that demonstrates the dataflow memory or-
dering problem. In the graph, the load must execute after the store to ensure
correct execution, should the two memory addresses be identical. However, the
dataflow graph does not express this implicit dependence between the two in-
structions (the dashed line). WaveScalar must provide an efficient mechanism
to encode this implicit dependence in order to support imperative languages.

Wave-ordered memory solves the dataflow memory ordering problem, using
the waves defined in Section 2.2.3. Within each wave, the compiler annotates
memory access instructions to encode the ordering constraints between them.
Since wave numbers increase as the program executes, they provide an order-
ing of the executing waves. Taken together, the coarse-grain ordering between
waves (via their wave numbers), combined with the fine-grain ordering within
each wave, provides a total order on all the memory operations in the program.

This section presents wave-ordered memory. Once we have more fully de-
scribed waves and discussed the annotation scheme for operations within a
wave, we describe how the annotations provide the necessary ordering. Then
we briefly discuss an alternative solution to the dataflow memory ordering
problem.

—Wave-ordering annotations. Wave-ordering annotations order the mem-
ory operations within a single wave. The annotations must guarantee two prop-
erties. Firstly, they must ensure that the memory operations within a wave ex-
ecute in the correct order. Wave-ordered memory achieves this by giving each
memory operation in a wave a sequence number. Sequence numbers increase on
all paths through a wave, ensuring that if one memory operation has a larger
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Fig. 6. Simple wave-ordered annotations. The three memory operations must execute in the order
shown. Predecessor, sequence, and successor numbers encode the ordering constraints. The “.”
symbols indicate that operations 0 and 2 are the first and last operations, respectively, in the wave.

sequence number than another, the one with the larger number comes later in
the program order. Figure 6 shows a very simple series of memory operations
and their annotations. The sequence number is the second of the three numbers
in angle brackets.

Secondly, wave-ordered memory must detect when all previous memory oper-
ations that will execute have done so. In the absence of branches, this detection
is simple: Since all the memory operations in a wave will eventually execute, the
memory system simply waits for all memory operations with lower sequence
numbers to complete. Control flow complicates this method because it allows
some of the memory operations to execute (those on taken paths) while others
do not (those on the nontaken paths). To accommodate, wave-ordered memory
must distinguish between operations that take a long time to fire and those
that never will. To ensure that all memory operations on the correct path are
executed, each memory operation also carries the sequence number of its pre-
vious and subsequent operations in the program order. Figure 6 includes these
annotations as well. The predecessor number is the first number between the
brackets, and the successor number is the last. For instance, the store in the
figure is preceded by a load with sequence number 0 and followed by a load with
sequence number 2, so its annotations are < 0, 1, 2 >. The “.” symbols indicate
that there is no predecessor of operation 0 and no successor of operation 2.

At branch (join) points, the successor (predecessor) number is unknown at
compile time because control may take one of two paths. In these cases a “wild-
card” symbol “?” takes the place of the successor (predecessor) number. The
lefthand portion of Figure 7 shows a simple IF-THEN-ELSE control flow graph that
demonstrates how the wildcard is applied; the righthand portion depicts how
memory operations on the taken path are sequenced, described next.

Intuitively, the annotations allow the memory system to “chain” memory
operations together. When the compiler generates and annotates a wave, there
are many potential chains of operations through the wave, but only one chain
(i.e., one control path) executes each time the wave executes (i.e., during one
dynamic instance of the wave). For instance, the right side of Figure 7 shows
the sequence of operations along one path through the code on the left. From
one operation to the next, either the predecessor and sequence numbers, or the
successor and sequence numbers match (the ovals in the figure).

In order for the chaining to be successful, the compiler must ensure that
there is a complete chain of memory operations along every path through a
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Fig. 7. Wave-ordering and control. Dashed boxes and lines denote basic blocks and control paths.
The righthand-side of the figure shows the instructions that actually execute when control takes
the righthand path (bold lines and boxes) and the matches between their annotations that define
program order.

Fig. 8. Resolving ambiguity. In (a) chaining memory operations is impossible along the right-side
path; (b) the addition of a MEMORY-NOP allows chaining.

wave. The chain must begin with an operation whose sequence number is 0
and end with successor number “.”, indicating that there is no successor.

It is easy to enforce this condition on the beginning and end of the chain of
operations, but ensuring that all possible paths through the wave are complete
is more difficult. Figure 8(a) shows an example. The branch and join mean that
instruction 0’s successor and instruction 2’s predecessor are both “?”. As a result,
the memory system cannot construct the required chain between operations
0 and 2 if control takes the righthand path. To create a chain, the compiler
inserts a special MEMORY-NOP instruction between 0 and 2 on the righthand
path (Figure 8(b)). The MEMORY-NOP has no effect on memory, but does send a
request to the memory interface to provide the missing link in the chain. Adding
MEMORY-NOPs introduces a small amount of overhead, usually less than 3% of
static instructions.
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—Ordering rules. We can now demonstrate how WaveScalar uses wave
numbers and the aforementioned annotations to construct a total ordering over
all memory operations in a program. Figure 7 shows a simple example. Control
takes the righthand path, resulting in three memory operations executed. At
the right, ovals show the links between the three operations that form them
into a chain. The general rule is that a link exists between two operations if the
successor number of the first operation matches the sequence number of the
second, or the sequence number of the first matches the predecessor number of
the second.

Since the annotations only provide ordering with a wave, WaveScalar uses
wave numbers to order the waves themselves. The WaveScalar processor must
ensure that all the operations from previous waves complete before the op-
erations in a subsequent wave can be applied to memory. Combining global
interwave ordering with local intrawave ordering provides a total ordering on
all operations in the program.

—Expressing parallelism. The basic version of wave-ordered memory de-
scribed earlier can be easily extended to express parallelism between memory
operations, allowing consecutive loads to execute in parallel or out-of-order.

The annotations and rules define a linear ordering of memory operations, ig-
noring potential parallelism between loads. Wave-ordered memory can express
this parallelism by providing a fourth annotation, called a ripple number. The
ripple number of a store is equal to its sequence number. A load’s ripple number
points to the store that most immediately precedes it. To compute the ripple
number for a load, the compiler collects the set of all stores that precede the
load on any path through the wave. The load’s ripple number is the maximum
of the stores’ sequence numbers. Figure 9 shows a sequence of load and store
operations with all four annotations. Note that the predecessor numbers are
still necessary to prevent a store from executing before the preceeding loads
have completed.

To accommodate ripples in the ordering rules, we allow a load to execute if it
is next in the chain operations (as before), or if the ripple number of the load is
less than or equal to the sequence number of a previously executed operation
(a load or a store). MEMORY-NOPs are treated like loads.

Figure 9 shows the two different types of links that can allow an operation
to fire. The solid ovals between the bottom four operations are similar to those
in Figure 7. The top two dashed ovals depict ripple-based links that allow the
two loads to execute in either order or in parallel.

Figure 10 contains a more sophisticated example. If control takes the right-
side branch, loads 1 and 4–6 can execute in parallel once store 0 has executed
because they all have ripple numbers of 0. Load 7 must wait for one of loads 4–6
execute because the ripple number of operation 7 is 2 and loads 4–6 all have
sequence numbers greater than 2. If control takes the lefthand branch, loads 3
and 7 can execute as soon as store 2 has executed.

Wave-ordered memory can express parallelism among load and store opera-
tions that a conventional out-of-order processor would discover by speculatively
assuming memory independence [Chrysos and Emer 1998]. The speculative
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Fig. 9. Simple ripples. A single wave containing a single basic block. The ripple annotations allow
loads 1 and 2 to execute in either order or in parallel, while the stores must wait for all previous
loads and stores to complete. Ovals depict the links formed between operations.

Fig. 10. Ripples and control. Branches make ripple behavior more complicated. If control takes the
righthand path, Loads 1 and 4–6 can execute in any order, but Load 7 must wait for an operation
with a sequence number greater than 2.
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approach can also uncover some paralellism that wave-ordered memory cannot
express (e.g., the compiler may be unable to prove that two stores are indepen-
dent when they actually are). However, nothing in the WaveScalar instruction
set or execution model prevents a WaveScalar processor from speculatively is-
suing memory operations and using the wave-ordering information to catch and
correct mispeculations. Our implementation does not currently speculate.

2.2.6 Other Approaches. Wave-ordered memory is not the only way to pro-
vide the required memory ordering. Researchers have proposed an alterna-
tive scheme that makes implicit memory dependences explicit by adding a
dataflow edge between each memory operation and the next [Beck et al. 1991;
Budiu et al. 2004]. While this “token-passing” scheme is simple, it does not per-
form as well as wave-ordered memory; our experiments have found that wave-
ordered memory expresses twice as much memory parallelism as token passing
[Swanson 2006].

Despite this, token passing is very useful in some situations because it gives
the programmer or compiler complete control over memory ordering. If very
good memory aliasing is available, the programmer or compiler can express par-
allelism directly by judiciously placing dependences only between those mem-
ory operations that must actually execute sequentially. WaveScalar provides a
simple token-passing facility for just this purpose (Section 6).

Previous dataflow machines have also provided two memory structures, I-
structures and M-structures, intended to support functional programming lan-
guages. These structures combine memory ordering with synchronization.

—I-structures. Functional languages initialize variables when they are de-
clared and disallow modifying their values. This eliminates the possibility of
read-after-write data hazards. The variable always contains the correct value,
so any read is guaranteed to see it. Dataflow language designers recognized
that this approach restricts parallelism because an array must be completely
initialized before its elements can be accessed. Ideally, one thread could fill-in
the array, while another accesses the initialized elements.

Dataflow languages such Id [Nikhil 1990] and SISAL [Feo et al. 1995] provide
this ability with I-structures [Arvind et al. 1989]. I-structures are write-once
memory structures. When a program allocates an I-structure, it is empty and
contains no value. A program can write, or fill-in, an I-structure (at most) once.
Reading from an empty I-structure blocks until the I-structure is full. Reading
from a full I-structure returns the value it holds. In the array example given
before, one thread allocates an array of I-structures and starts filling them in.
The second thread can attempt to read entries of the array, but will block if it
tries to access an empty I-structure.

—M-structures. M-structures [Barth et al. 1991] provide checkin/checkout
semantics for variables. Reading from a full M-structure removes the value, and
a write fills the value back in. Attempting to read from an empty M-structure
blocks until the value is returned.

A typical example of M-structures in action is a histogram. Each bucket is an
M-structure, and a group of threads adds elements to the buckets concurrently.
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Since addition is commutative, the order of updates is irrelevant, but they must
be sequentialized. M-structures provide precisely the necessary semantics.

2.3 Discussion

The WaveScalar instruction set that this section describes is sufficient to exe-
cute single-threaded applications written in conventional imperative program-
ming languages. The instruction set is slightly more complex than a conven-
tional RISC ISA, but we have not found the complexity difficult for the pro-
grammer or the compiler to handle.

In return for the complexity, WaveScalar provides three significant benefits.
First, wave-ordered memory allows WaveScalar to efficiently provide the se-
mantics that imperative languages require and to express parallelism among
load operations. Second, WaveScalar can express instruction-level parallelism
explicitly, while still maintaining these conventional memory semantics. Third,
WaveScalar’s execution model is distributed. Only instructions that must pass
each other data communicate. There is no centralized control point.

In the next section we describe a microarchitecture that implements the
WaveScalar ISA. We find that in addition to increasing instruction-level paral-
lelism, the WaveScalar instruction set allows the microarchitecture to be sub-
stantially simpler than a modern out-of-order superscalar.

3. A WAVECACHE ARCHITECTURE FOR SINGLE-THREADED PROGRAMS

WaveScalar’s overall goal is to enable an architecture that avoids the scaling
problems described in the Introduction. With the decentralized WaveScalar
dataflow ISA in hand, our task is to develop a decentralized, scalable architec-
ture to match. In addition to the scaling challenges, this architecture also must
address additional challenges specific to WaveScalar. In particular, it must ef-
ficiently implement the dataflow firing rule and provide storage for multiple
(perhaps many) instances of data values with different tags. It must also pro-
vide an efficient hardware implementation of wave-ordered memory.

This section describes a tile-based WaveScalar architecture, called the Wave-
Cache, that addresses these challenges. The WaveCache comprises everything,
except main memory, required to run a WaveScalar program. It contains a scal-
able grid of simple, identical dataflow processing elements that are organized
hierarchically to reduce operand communication costs. Each level of the hier-
archy uses a separate communication structure: high-bandwidth, low-latency
systems for local communication, and slower, narrower communication mech-
anisms for long-distance communication.

As we will show, the resulting architecture directly addresses two of the
challenges we outlined in the Introduction. First, the WaveCache contains no
long wires. In particular, as the size of the WaveCache increases, the length of
the longest wires does not. Second, the WaveCache architecture scales easily
from small designs suitable for executing a single thread to much larger designs
suited to multithreaded workloads (See Section 5). The larger designs contain
more tiles, but the tile structure, and therefore the overall design complexity,
does not change. The final challenge mentioned in the Introduction, that of
defect- and fault-tolerance, is the subject of ongoing research. The WaveCache’s
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Fig. 11. The WaveCache. The hierarchical organization of the microarchitecture of the WaveCache.

decentralized, uniform structure suggests that it would be easy to disable faulty
components to tolerate manufacturing defects.

We begin by summarizing the WaveCache’s design and operation at a high
level in Section 3.1. Next, Sections 3.2 to 3.6 provide a more detailed descrip-
tion of its major components and how they interact. Section 3.7 describes a
synthesizable RTL model that we use in combination with simulation stud-
ies to provide the specific architectural parameters for the WaveCache we de-
scribe. Finally, Section 3.8 describes other processor designs that share many
of WaveScalar’s goals. Section 4 evaluates the design in terms of performance
and the amount of area it requires.

3.1 WaveCache Architecture Overview

Several recently proposed architectures, including WaveCache, take a tile-
based approach to addressing the scaling problems outlined in the Introduc-
tion [Nagarajan et al. 2001; Sankaralingam et al. 2003; Lee et al. 1998; Mai
et al. 2000; Goldstein and Budiu 2001; Budiu et al. 2004]. Instead of design-
ing a monolithic core that comprises the entire die, tiled processors cover the
die with hundreds or thousands of identical tiles, each of which is a complete,
though simple, processing unit. Since they are less complex than the monolithic
core and replicated across the die, tiles more quickly amortize design and ver-
ification costs. Tiled architectures also generally compute under decentralized
control, contributing to shorter wire lengths. Finally, they can be designed to
tolerate manufacturing defects in some portion of the tiles.

In the WaveCache, each tile is called a cluster (see Figure 11). A cluster
contains four identical domains, each with eight identical processing elements
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Fig. 12. Mapping instruction into the WaveCache. The loop in Figure 3(c) mapped onto two Wave-
Cache domains. Each large square is a processing element.

(PEs). In addition, each cluster has a four-banked L1 data cache, wave-ordered
memory interface hardware, and a network switch for communicating with
adjacent clusters.

From the programmer’s perspective, every static instruction in a WaveScalar
binary has a dedicated processing element. Clearly, building an array of clus-
ters large enough to give each instruction in an entire application its own PE is
impractical and wasteful, so in practice, we dynamically bind multiple instruc-
tions to a fixed number of PEs, each of which can hold up to 64 instructions.
Then, as the working set of the application changes, the WaveCache replaces
unneeded instructions with newly activated ones. In essence, the PEs cache the
working set of the application, hence the WaveCache moniker.

Instructions are mapped to and placed in PEs dynamically as a program
executes. The mapping algorithm has two, often conflicting, goals: to place de-
pendent instructions near each other (e.g., in the same PE) so as to minimize
producer-consumer operand latency, and to spread independent instructions
out across several PEs to exploit parallelism. Figure 12 illustrates how the
WaveScalar program in Figure 3(c) can be mapped into two domains in the
WaveCache. To minimize operand latency, the entire loop body (i.e., everything
but the CONST instructions that initiates the loop) has been placed in a single
domain.

A processing element’s chief responsibilities are to implement the dataflow
firing rule and execute instructions. Each PE contains a functional unit, spe-
cialized memories to hold operands, and logic to control instruction execution
and communication. It also contains buffering and storage for several differ-
ent static instructions. A PE has a five-stage pipeline, with bypass networks
that allow back-to-back execution of dependent instructions at the same PE.
Two aspects of the design warrant special notice. First, it avoids the large,
centralized associative tag-matching store found on some previous dataflow
machines [Gurd et al. 1985]. Second, although PEs dynamically schedule ex-
ecution, the scheduling hardware is dramatically simpler than a conventional
dynamically scheduled processor. Section 3.2 describes the PE design in more
detail.

To reduce communication costs within the grid, PEs are organized hierarchi-
cally along with their communication infrastructure (Figure 11). They are first
coupled into pods; PEs within a pod snoop each other’s ALU bypass networks
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and share instruction scheduling information, and therefore achieve the same
back-to-back execution of dependent instructions as a single PE. The pods are
further grouped into domains; within a domain, PEs communicate over a set of
pipelined buses. The four domains in a cluster communicate over a local switch.
At the top level, clusters communicate over an on-chip interconnect built from
the network switches in the clusters.

PEs access memory by sending requests to the memory interface in their local
cluster. If possible, the local L1 cache provides the data. Otherwise, it initiates
a conventional cache-coherence request to retrieve the data from the L2 cache
(located around the edge of the array of clusters, along with the coherence
directory) or L1 cache that currently owns the data.

A single cluster, combined with an L2 cache and traditional main memory,
is sufficient to run any WaveScalar program, albeit with a possibly high Wave-
Cache miss rate as instructions are swapped in and out of the small number of
available PEs. To build larger and higher-performing machines, multiple clus-
ters are connected by an on-chip network. A traditional directory-based MESI
protocol maintains cache coherence.

3.2 The PE

At a high level, the structure of a PE pipeline resembles a conventional five-
stage, dynamically scheduled execution pipeline. The biggest difference be-
tween the two is that the PE’s execution is entirely data-driven. Instead of ex-
ecuting instructions provided by a program counter, as found on von Neumann
machines, values (i.e., tokens) arrive at a PE destined for a particular instruc-
tion. The arrival of all of an instruction’s input values triggers its execution:
the essence of dataflow execution.

Our main goal in designing the PE was to meet our cycle-time goal while
still allowing dependent instructions to execute on consecutive cycles. Pipelin-
ing was relatively simple. Back-to-back execution, however, was the source of
significant complexity.

The PE’s pipeline has five stages (see Figure 13):

(1) Input. At the INPUT stage, operand messages arrive at the PE either from
itself or another PE. The PE may reject messages if more than three arrive
in one cycle; the senders then retry on a later cycle.

(2) Match. During MATCH, operands enter the matching table. The matching
table contains a tracker board and operand caches. It determines which
instructions are ready to fire and issues eligible instructions by placing
their matching table index into the instruction scheduling queue.

(3) Dispatch. At the DISPATCH stage, the PE selects an instruction from the
scheduling queue, reads its operands from the matching table, and forwards
them to EXECUTE. If the destination of the dispatched instruction is local,
this stage speculatively issues the consumer instruction to the scheduling
queue.

(4) Execute. The EXECUTE stage executes an instruction. Its result goes to the
output queue and/or the local bypass network.
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Fig. 13. PE block diagram. The processing element’s structure by pipeline stage. Note that the
block at the end of output is the same as the block at the start of input, since wire delay is spread
between the two stages.

(5) Output. An instruction output is sent to its consumer instructions via the
intradomain network during the OUTPUT stage. Consumers may be at this
PE or a remote PE.

An instruction store holds the decoded instructions that reside at a PE. To
keep it single-ported, the RTL design divides it into several small SRAMs, each
holding the decoded information needed at a particular stage of the pipeline.
The instruction store comprises about 33% of the PE’s area.

The matching table handles instruction input matching. Implementing this
operation cost-effectively is essential to an efficient dataflow machine. The key
challenge in designing WaveScalar’s matching table is emulating a potentially
infinite table with a much smaller physical structure. This problem arises be-
cause WaveScalar is a dynamic dataflow architecture with no limit on the num-
ber of dynamic instances of a static instruction with unconsumed inputs. We
use a common dataflow technique [Gurd et al. 1985; Shimada et al. 1986] to
address this challenge: The matching table is a specialized cache for a larger,
in-memory matching table. New tokens are stored in the matching cache. If a
token resides there for a sufficiently long time, another token may arrive that
hashes to the same location. In this case, the older token is sent to the matching
table in memory.
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Fig. 14. The flow of operands through the PE pipeline and forwarding networks.

The matching table is separated into three columns, one for each potential
instruction input (certain WaveScalar instructions, such as data steering in-
structions, can have three inputs.)2 Each column is divided into four banks to
allow up to four messages to arrive at each cycle. Reducing the number of banks
to two reduced performance by 5% on average and 15% for ammp. Increasing
the number of banks to eight had negligible effect. In addition to the three
columns, the matching table contains a tracker board which holds operand tags
(wave number and consumer instruction number) and tracks which operands
are present in each row of the matching table.

Since the matching table is a cache, we can apply traditional cache opti-
mizations to reduce its miss rate. Our simulations show that two-way set-
associativity increases performance over direct-mapped by 10% on average and
reduces matching table misses (situations when no row is available for an in-
coming operand) by 41%. Four-way associativity provides less than 1% addi-
tional performance, hence the matching table is two-way. The matching table
comprises about 60% of PE area.

To achieve good performance, PEs must be able to execute dependent instruc-
tions on consecutive cycles. When DISPATCH issues an instruction with a local
consumer of its result, it speculatively schedules the consumer instruction to
execute on the next cycle. The schedule is speculative because DISPATCH cannot
be certain that the dependent instruction’s other inputs are available. If they
are not, the speculatively scheduled consumer is ignored.

Figure 14 illustrates how instructions from a simple dataflow graph (on the
lefthand-side of the figure) flow through the WaveCache pipeline. It also illus-
trates how the bypass network allows instructions to execute on consecutive
cycles. In the diagram, X [n] is the nth input to instruction X . Five consecutive
cycles are depicted; before the first of these, one input for each of instructions
A and B has arrived and resides in the matching table, and the corresponding
bits are also set in the tracker board. The tracker board also contains the tag
(THREAD-ID and WAVE-NUMBER) of the values in each occupied row. The “clouds”

2The third column is special and supports only single-bit operands. This is because three-input
instructions in WaveScalar always have one argument which needs to be only a single bit. Other
columns hold full 64-bit operands.
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Fig. 15. The cluster interconnects. A high-level picture of a cluster illustrating the interconnect
organization.

in the dataflow graph represent operands that were computed by instructions
at other processing elements and have arrived via the input network.
—Cycle 0: Operand A[0] arrives and INPUT accepts it (at left in Figure 14).
—Cycle 1: MATCH writes A[0] into the matching table and, because both its
inputs are present, places A into the scheduling queue.
—Cycle 2: DISPATCH chooses A for execution and reads its operands from the
matching table. At the same time, it recognizes that A’s output is destined for
B. In preparation for this producer-consumer handoff, B is inserted into the
scheduling queue.
—Cycle 3: DISPATCH reads B[0] from the matching table. EXECUTE computes the
result of A, which becomes B[1].
—Cycle 4: EXECUTE computes the result of instruction B, using B[0] from
DISPATCH and B[1] from the bypass network.
—Cycle 5 (not shown): OUTPUT will send B’s result to instruction Z .

The logic in MATCH and DISPATCH is the most complex part of the entire Wave-
Cache architecture, and most of it is devoted to logic that executes back-to-back
dependent instructions within our cycle-time goal.

3.3 The WaveCache Interconnect

The previous section described the execution resource of the WaveCache,
namely, the PE. This section will detail how PEs on the same chip commu-
nicate. PEs send and receive data using a hierarchical on-chip interconnect
(see Figure 15). There are four levels in this hierarchy: intrapod, intradomain,
intracluster, and intercluster. While the purpose of each network is the same,
that is, transmission of instruction operands and memory values, their designs
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vary significantly. We will describe the salient features of these networks in the
next four subsections.

3.3.1 PEs in a Pod. The first level of interconnect, the intrapod intercon-
nect, enables two PEs to share scheduling hints and computed results. Merging
a pair of PEs into a pod consequently provides lower-latency communication
between them than that obtained by using the intradomain interconnect (de-
scribed next). Although PEs in a pod snoop each other’s bypass networks, the
rest of their hardware remains partitioned, that is, they have separate match-
ing tables, scheduling and output queues, etc.

The decision to integrate pairs of PEs together is a response to two competing
concerns: We wanted the clock cycle to be short and instruction-to-instruction
communication to take as few cycles as possible. To reach our cycle-time goal,
the PE and the intradomain interconnect had to be pipelined. This increased av-
erage communication latency and reduced performance significantly. Allowing
pairs of PEs to communicate quickly brought the average latency back down
without significantly impacting cycle time. However, their tightly integrated
design added significant complexity and took a great deal of effort to imple-
ment correctly. Integrating more PEs would increase complexity further, and
our data showed that the additional gains in performance would be small.

3.3.2 The Intradomain Interconnect. PEs communicate with PEs in other
pods over an intradomain interconnect. In addition to the eight PEs in the
domain, the intradomain interconnect also connects two pseudo-PEs that serve
as gateways to the memory system (the MEM pseudo-PE) and to other PEs on
the chip (the NET pseudo-PE). The pseudo-PEs’ interface to the intradomain
network is identical to a normal PE’s.

The intradomain interconnect is broadcast-based. Each of the eight PEs has
a dedicated result bus that carries a single data result to the other PEs in its
domain. Each pseudo-PE also has a dedicated output bus. PEs and pseudo-PEs
communicate over the intradomain network using an ACK/NACK network.

3.3.3 The Intracluster Interconnect. The intracluster interconnect pro-
vides communication between the four domains’ NET pseudo-PEs. It also uses
an ACK/NACK network similar to that of the intra-domain interconnect.

3.3.4 The Intercluster Interconnect. The intercluster interconnect is re-
sponsible for all long-distance communication in the WaveCache. This includes
operands traveling between PEs in distant clusters and coherence traffic for
the L1 caches.

Each cluster contains an intercluster network switch which routes messages
between six input/output ports: four of the ports lead to network switches in
the four cardinal directions, one is shared among the four domains’ NET pseudo-
PEs, and one is dedicated to the store buffer and L1 data cache.

Each input/output port supports the transmission of up to two operands. Its
routing follows a simple protocol: The current buffer storage state at each switch
is sent to the adjacent switches, which receive this information one clock cycle
later. Adjacent switches only send information if the receiver is guaranteed
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Fig. 16. The microarchitecture of the store buffer.

to have space. The intercluster switch provides two virtual channels that the
interconnect uses to prevent deadlock [Dally and Seitz 1987].

3.4 The Store Buffer

The hardware support for wave-ordered memory lies in the WaveCache’s store
buffers. The store buffers, one per cluster, are responsible for implementing the
wave-ordered memory interface that guarantees correct memory ordering. To
access memory, processing elements send requests to their local store buffer
via the MEM pseudo-PE in their domain. The store buffer will either process
the request or direct it to another buffer via the intercluster interconnect. All
memory requests for a single dynamic instance of a wave (e.g., an iteration of an
inner loop), including requests from both local and remote processing elements,
are managed by the same store buffer.

To simplify the description of the store buffer’s operation, we denote pred(R),
seq(R), and succ(R) as the wave-ordering annotations for a request R. We also
define next(R) to be the sequence number of the operation that actually follows
R in the current instance of the wave. Specifically, next(R) is either determined
directly from succ(R) or calculated by the wave-ordering hardware if succ(R)
is “?”.

The store buffer (see Figure 16) contains four major microarchitectural com-
ponents: an ordering table, a next-request table, an issued register, and a collec-
tion of partial store queues. Store buffer requests are processed in three pipeline
stages: MEMORY-INPUT writes newly arrived requests into the ordering and next-
request tables. MEMORY-SCHEDULE reads up to four requests (one from each of
the four banks) from the ordering table and checks to see if they are ready to
issue. MEMORY-OUTPUT dispatches memory operations that can fire to the cache
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or to a partial-store queue (described to follow). We detail each pipeline stage
of this memory interface to next.

MEMORY-INPUT accepts up to four new memory requests per cycle. It writes
the address, operation, and data (if available in the case of stores) into the
ordering table at the index seq(R). If succ(R) is defined (i.e., not “?”), the entry
in the next-request table at location seq(R) is updated to succ(R). If pred(R) is
defined, the entry in the next-request table at location pred(R) is set to seq(R).

MEMORY-SCHEDULE maintains the issued register which points to the subse-
quent memory operations to be dispatched to the data cache. It uses this register
to read four entries from the next-request and ordering tables. If any memory
ordering links can be formed (i.e., next-request table entries are not empty), the
memory operations are dispatched to MEMORY-OUTPUT and the issued register
is advanced. The store buffer supports the decoupling of store data from store
addresses. This is done with a hardware structure called a partial-store queue,
described next. The salient point for MEMORY-SCHEDULE, however, is that Stores
are sent to MEMORY-OUTPUT even if their data has not yet arrived.

Partial-store queues take advantage of the fact that store addresses can ar-
rive significantly before their data. In these cases, a partial-store queue stores
all operations to the same address. These operations must wait for the data
to arrive, but operations to other addresses may proceed. When their data fi-
nally arrives, all operations in the partial-store queue can be applied in quick
succession. Each WaveScalar store buffer contains two partial-store queues.

MEMORY-OUTPUT reads and processes dispatched memory operations. Four
situations can occur: (1) The operation is a load or a store with its data present.
The memory operation proceeds to the data cache; (2) the operation is a load or
a store and a partial-store queue exists for its address. The memory operation
is sent to the partial-store queue; (3) the operation is a store, its data has not
yet arrived, and no partial-store queue exists for its address. A free partial-
store queue is allocated and the store is sent to it; (4) the operation is a load
or a store, but no free partial-store queue is available or its partial-store queue
is full. The memory operation remains in the ordering table and the issued
register is rolled back. The operation will reissue later.

3.5 Caches

The rest of the WaveCache’s memory hierarchy comprises a 32KB, four-way
set-associative L1 data cache at each cluster, and a 16MB L2 cache that is dis-
tributed along the edge of the chip (16 banks in a 4x4 WaveCache). A directory-
based MESI coherence protocol keeps the L1 caches consistent. All coherence
traffic travels over the intercluster interconnect.

The L1 data cache has a three-cycle hit delay. The L2’s hit delay is 14–30
cycles, depending upon the address and the distance to the requesting cluster.
Main memory latency is modeled at 200 cycles.

3.6 Placement

Placing instructions carefully into the WaveCache is critical to good perfor-
mance because of the competing concerns we mentioned earlier. Instructions’
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proximity determines the communication latency between them, arguing for
tightly packing instructions together. On the other hand, instructions that can
execute simultaneously should not end up at the same processing element be-
cause competition for the single functional unit will serialize them.

We continue to investigate the placement problem, and details of our inves-
tigation, the tradeoffs involved, and a placement’s effects on performance are
available in Mercaldi et al. [2006a, 2006b]. Here, we describe the approach we
used for the studies in this article.

The placement scheme has a compile-time and a runtime component. The
compiler is responsible for grouping instructions into segments. At runtime, a
whole segment of instructions will be placed at the same PE. Because of this, the
compiler tries to group instructions into the same segment if these instructions
are not likely to execute simultaneously but share operands, and therefore can
utilize the fast local bypass network available inside of each PE. The algorithm
we use to form segments is a depth-first traversal of the dataflow graph.

At runtime, the WaveCache loads a segment of instructions when an instruc-
tion that is not mapped into the WaveCache needs to execute. As previously dis-
cussed, the entire segment is mapped to a single PE. Because of the ordering
that the compiler used to generate the segments, they will usually be depen-
dent on one another. As a result, they will not compete for execution resources,
but instead will execute on consecutive cycles. The algorithm fills all the PEs
in a domain, and then all the domains in a cluster, before moving on to the next
cluster. It fills clusters by “snaking” across the grid, moving from left-to-right
on even rows and right-to-left on odd rows.

This placement scheme does a good job of scheduling for minimal execution
resource contention and communication latency. However, a third factor, the so-
called “parallelism explosion,” can also have a strong effect on performance in
dataflow systems. The parallelism explosion occurs when part of an application
(e.g., the index computation of an inner loop) runs ahead of the rest of the
program, generating a vast number of tokens that will not be consumed for a
long time. These tokens overflow the matching table and degrade performance.
We use a well-known dataflow technique, k-loop bounding [Culler 1990], to
restrict the number iterations k that can be executing at one time. We tune k
for each application, and for the applications we study, it is between two and
five.

3.7 The RTL Model

To explore the area, speed, and complexity implications of the WaveCache ar-
chitecture, we have developed a synthesizable RTL model of the components
described earlier. We use the RTL model, combined with detailed architectural
simulation, to tune the WaveCache’s parameters and make tradeoffs between
performance, cycle time, and silicon area. All the specific parameters of the ar-
chitecture (e.g., cache sizes, bus widths, etc.) reflect the results of this tuning
process. The design we present is a WaveCache appropriate for general-purpose
processing in 90nm technology. Other designs targeted at specific workloads or
future process technologies would differ in the choice of particular parameters,
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Table I. A Cluster’s Area Budget

Fraction of
Component Cluster Area
PE stages

INPUT 0.9%
MATCH 43.3%
DISPATCH 0.4%
EXECUTE 1.8%
OUTPUT 1.3%
instruction store 23.2%

PE total 71%
Domain overhead 7.4%
Intercluster 0.9%

interconnect switch
Storebuffer 6.2%
L1 cache 14.5%

A breakdown of the area required for a cluster. Most
of the area is devoted to processing resources.

but the overall structure of the design would remain the same. A thorough dis-
cussion of the RTL design and the tuning process is beyond the scope of this
article (but can be found in Swanson et al. [2006]). Here, we summarize the
methodology and timing results.

We derive our results with the design rules and recommended tool infras-
tructure of the Taiwan Semiconductor Manufacturing Company’s TSMC Ref-
erence Flow 4.0 [TSMC 2007], which is tuned for 130nm and smaller designs
(we use 90nm). By using these up-to-date specifications, we ensure, as best as
possible, that our results scale to future technology nodes. To ensure that our
measurements are reasonable, we follow TSMC’s advice and feed the generated
netlist into Cadence Encounter for floorplanning and placement, and then use
Cadence NanoRoute for routing [Cadence 2007]. After routing and RC extrac-
tion, we measure the timing and area values.

According to the synthesis tools, our RTL model meets our timing goal of a
20 FO4 cycle time (∼1GHz in 90nm). The cycle time remains the same, regard-
less of the size of the array of clusters. The model also provides detailed area
measurements for the WaveCache’s components. Table I shows a breakdown of
area within a single cluster. The ratios for an array of clusters are the same.

In the next section, we place the WaveCache in context relative to other tiled
architectures. Then, in Section 4 we evaluate WaveCache’s performance on
single-threaded applications and compare this as well as its area requirements
with a conventional superscalar processor.

3.8 Other Tiled Architectures

The WaveCache hardware design described in Sections 3 and 5 is a tiled archi-
tecture. Broadly speaking, a tiled architecture is a processor design that uses
an array of basic building blocks of silicon to construct a larger processor.

Tiled architectures provide three advantages over traditional monolithic
designs. First, they reduce design complexity by emphasizing design reuse.
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WaveScalar exploits this principle at several levels (PE, domain, and cluster).
Second, tiled designs seek to avoid long wires. In modern technology, wire delay
dominates the cost of computation. Wires in most tiled architectures span no
more than a single tile, ensuring that wire length does not increase with the
number of tiles. Finally, tiled architectures seek to be scalable. An ideal tiled
architecture would scale to any number of tiles, both in terms of functional
correctness and in terms of performance.

Several research groups have proposed tiled architectures with widely vary-
ing tile designs. Smart Memories [Mai et al. 2000] provides multiple types
of tiles (e.g., processing elements and reconfigurable memory elements). This
approach allows greater freedom in configuring an entire processor, since the
mix of tiles can vary from one instantiation to the next, perhaps avoiding the
difficulties in naive scaling that we found in our study.

The TRIPS [Nagarajan et al. 2001; Sankaralingam et al. 2003] processor
uses dataflow ideas to build a hybrid von Neumann/dataflow machine. It uses a
program counter to guide execution, but instead of moving from one instruction
to the next, the TRIPS PC selects frames (similar to hyperblocks [Mahlke et al.
1992]) of instructions for execution in an array of 16 processing elements that
make up a TRIPS processor.

Despite high-level similarities between waves and frames and the
WaveScalar and TRIPS PE designs, the two architectures are quite different.
In TRIPS, a register file at the top of the array holds values that pass from one
frame to another. Each TRIPS PE can hold multiple instructions, so each PE
requires multiple input buffers. However, execution follows the static dataflow
model, making tag matching logic unnecessary.

Using dataflow execution within a von Neumann processor is the same ap-
proach taken by out-of-order superscalars, but the TRIPS design avoids the long
wires and broadcast structures that make conventional out-of-order processors
nonscalable. However, because it uses a program counter to select frames of in-
structions for execution, TRIPS must speculate aggressively. Mapping a frame
of instructions onto the PE array takes several cycles, so the TRIPS processor
speculatively maps frames onto the PEs ahead of time. WaveScalar does not
suffer from this problem because its dynamic dataflow execution model allows
instructions to remain in the grid for many executions, obviating the need for
speculation. The disadvantage of WaveScalar’s approach is the need for complex
tag-matching hardware to support dynamic dataflow execution

The two projects also have much in common. Both take a hybrid
static/dynamic approach to scheduling instruction execution by carefully plac-
ing instructions in an array of processing elements and then allowing execution
to proceed dynamically. This places both architectures between dynamic out-
of-order superscalar designs and statically scheduled VLIW machines. Those
designs have run into problems because dynamic scheduling hardware does
not scale and by nature, static scheduling is conservative. A hybrid approach
will be necessary, but it is as yet unclear whether either WaveScalar or TRIPS
strikes the optimal balance.

WaveScalar and TRIPS also take similar approaches to ordering memory op-
erations. TRIPS uses load/store IDs (LSIDs) [Smith et al. 2006] to order memory
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Table II. Microarchitectural Parameters of the Baseline WaveCache

WaveCache Capacity 2K(WC1×1) or 8K(WC2×2) static instructions (64/PE)
PEs per Domain 8 (4 pods); 1 FPU/domain
PE Input Queue 16 entries, 4 banks (1KB total); 32 cycle miss penalty
PE Output Queue 4 entries, 2 ports (1r, 1w)
PE Pipeline Depth 5 stages
Domains/Cluster 4
Network Switch 2-port, bidirectional
Network Latency within Pod: 1 cycle

within Domain: 5 cycles
within Cluster: 9 cycles
Intercluster: 9 + cluster dist.

L1 Caches 32KB, 4-way set-associative, 128B line,
4 accesses per cycle

L2 Cache 1MB (WC1×1) or 4MB (WC2×2) shared, 128B line,
16-way set-associative, 10 cycle access

Main RAM 200 cycle latency

operations within a single frame. Like the sequence numbers in wave-ordered
memory, LSIDs provide ordering among the memory operations. However, the
TRIPS scheme provides no mechanism for detecting whether a memory op-
eration will actually execute during a specific dynamic execution of a frame.
Instead, TRIPS guarantees that memory operations accessing the same ad-
dress will execute in the correct order and modifies the consistency model to
treat frames of instructions as atomic operations. LSID-based memory order-
ing requires memory disambiguation hardware that increases the complexity
of the design relative to WaveScalar’s wave-ordering store buffer.

The RAW project [Taylor et al. 2004] uses a simple processor core as a tile
and builds a tightly coupled multiprocessor. The RAW processor provides for
several different execution models. The compiler can statically schedule a single
program to run across all the tiles, effectively turning RAW into a VLIW-style
processor. Alternatively, the cores can run threads from a larger computation
that communicates using RAW’s tightly integrated, interprocessor message-
passing mechanism.

4. SINGLE-THREADED WAVECACHE PERFORMANCE

This section measures WaveCache’s performance on a variety of single-threaded
workloads. We measure the performance of a single-cluster WaveCache design
using cycle-accurate simulation of the architecture in Section 3. This Wave-
Cache achieves performance similar to that of a conventional out-of-order su-
perscalar processor, but does so in only 30% as much area.

Before we present the performance results in detail, we review the Wave-
Cache’s parameters and describe our workloads and toolchain.

4.1 Methodology

Table II summarizes the parameters for the WaveCache we use in this section.
To evaluate WaveCache performance, we use an execution-driven cycle-

accurate simulator that closely matches our RTL model. The performance we
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Table III. Workload Configurations

Benchmark Parameters

Splash2 fft -m12
lu -n128
radix -n16384 -r32
ocean-noncont -n18
water-spatial 64 molecules
raytrace -m64 car.env

MediaBench mpeg options.par data/out.mpg
djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
adpcm < clinton.adpcm

SpecInt gzip /ref/input/input.source 60
twolf ref/input/ref
mcf ref/input/inp.in

SpecFP ammp < ref/input/ammp.in
art -scanfile ref/input/c756hel.in -trainfile1 ref/input/a10.img

-trainfile2 ref/input/hc.img -stride 2 -startx 470
-starty 140 -endx 520 -endy 180 -objects 10

equake < ref/input/inp.in

Workloads and parameters used in this article.

report here is lower than that in the original WaveScalar paper [Swanson et al.
2003]. The discrepancy is not surprising, since that work used an idealized
memory system (perfect L1 data caches), larger 16-PE domains, and a non-
pipelined design.

In the experiments in this section, we use nine benchmarks from three
groups. From SpecINT2000: gzip, mcf, and twolf ; from SpecFP2000: ammp,
art, and equake [SPEC 2000]; and from Mediabench[Lee et al. 1997]: djpeg,
mpeg2encode, and rawdaudio. We compiled each application with the DEC cc
compiler using -O4 -fast -inline speed optimizations. A binary translator-
based toolchain was used to convert these binaries into WaveScalar assembly
and then into WaveScalar binaries. The choice of benchmarks represents a
range of applications, as well as the limitations of our binary translator. The
binary translator cannot process some programming constructs (e.g., compiler
intrinsics that don’t obey the Alpha calling convention and jump tables), but
this is strictly a limitation of our translator, not a limitation of WaveScalar’s ISA
nor its execution model. We are currently working on a full-fledged compiler
that will allow us to run a wider range of applications [Petersen et al. 2006].
Table III shows the configuration parameters for these workloads, as well as the
multithreaded workloads we use in Section 5. We skip past the initialization
phases of all our workloads.

To make measurements comparable with conventional architectures, we
measure performance in Alpha instructions per cycle (AIPC) and base our su-
perscalar comparison on a machine with similar clock speed [Hrishikesh et al.
2002]. AIPC measures the number of nonoverhead instructions (e.g., STEER, φ,
etc.) executed per cycle. The AIPC measurements for the superscalar archi-
tectures to which we compare WaveScalar are in good agreement with other
measurements [Mukherjee et al. 2003].
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Fig. 17. Single-threaded WaveCache vs. superscalar. On average, both WaveCaches perform com-
parably to the superscalar.

After the startup portion of each application is finished, we run each appli-
cation for 100 million Alpha instructions, or to completion.

4.2 Single-Threaded Performance

To evaluate WaveScalar’s single-threaded performance, we compare three dif-
ferent architectures: two WaveCaches and an out-of-order processor. For the
out-of-order measurements, we use sim-alpha configured to model the Alpha
EV7 [Desikan et al. 2001; Jain 2001], but with the same L1, L2, and main
memory latencies that we model for the WaveCache.3 The two WaveCache con-
figurations are WC1x1, a 1×1 array of clusters, and WC2x2, a 2×2 array. The
only other difference between the two architectures is the size of the L2 cache
(1MB for WC1x1 versus 4MB for WC2x2).

Figure 17 compares all three architectures on the single-threaded bench-
marks using AIPC. Of the two WaveCache designs, WS1x1 has better perfor-
mance on two floating point applications (ammp and equake). A single cluster
is sufficient to hold the working set of instructions for these applications, so
moving to a four-cluster array spreads the instructions out and increases com-
munication costs. The costs take two forms. First, the WC2x2 contains four L1
data caches that must be kept coherent, while WC1x1 contains a single cache,
avoiding this overhead. Second, the average latency of messages between in-
structions increases by 20% on average because some messages must traverse
the intercluster network. The other applications, except for twolf and art, have
very similar performance on both configurations. Twolf and art do better on

3Note that the load-use penalty for the WaveCache is still longer: It takes one to two cycles for the
request to travel through the wave-ordering store buffer and reach the L1 cache.
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WC2x2; their working sets are large enough to utilize either the additional in-
struction capacity (twolf ) or the additional memory bandwidth provided by the
four L1 data caches (art).

The performance of the WS1x1 compared to OOO does not show a clear
winner in terms of raw performance. WS1x1 tends to do better for four applica-
tions, outperforming OOO by 4.5× on art, 66% on equake, 34% on ammp, and
2.5× on mcf. All these applications are memory-bound (OOO with a perfect
memory system performs between 3.6–32× better), and two factors contribute
to WaveScalar’s superior performance. First, WaveScalar’s dataflow execution
model allows several iterations to execute simultaneously. Second, since wave-
ordered memory allows many waves to execute simultaneously, load and store
requests can arrive at the store buffer long before they are actually applied to
memory. The store buffer can then prefetch the cache lines that the requests
will access, so when the requests emerge from the store buffer in the correct
order, the data they need is waiting for them.

WaveScalar does less well on most integer computations, due to frequent
function calls. A function can only occur at the end of a wave because called
functions immediately create a new wave. As a result, frequent function calls
in the integer applications reduce the size of the waves that the compiler can
create by 50% on average compared to floating point applications, consequently
reducing memory parallelism. Twolf and gzip are hit hardest by this effect,
and OOO outperforms WS1x1 by 54% and 32%, respectively. For the rest of the
applications, WS1x1 is no more than 10% slower than OOO.

The performance differences between the two architectures are further clari-
fied if we take into account the die area required for each processor. To estimate
the size of OOO, we examined a die photo of the EV7 in 180nm technology [Jain
2001; Krewel 2005]. The entire die is 396mm2. From this, we subtracted the area
devoted to several components that our RTL model does not include (e.g., the
PLL, IO pads, and interchip network controller), but which would be present
in a real WaveCache. We estimate the remaining area to be ∼291mm2, with
∼160mm2 devoted to 2MB of L2 cache. Scaling all these measurements to 90nm
technology yields ∼72mm2 total and 40mm2 of L2. Measurements from our RTL
model show that WC1x1 occupies 48mm2 (12mm2 of L2 cache) and WC2x2 oc-
cupies 247mm2 (48mm2 of L2 cache) in 90nm. We speculate that the difference
in L2 density is due to additional ports in the EV7 needed to support snooping.

Figure 18 shows the area-efficiency of the WaveCaches measured in
AIPC/mm2 compared to OOO. The WaveCache’s more compact design allows
WS1x1 to extract 21% more AIPC per area as does OOO, on average. The re-
sults for WS2x2 show that for these applications, quadrupling the size of the
WaveCache does not have an commensurate effect on performance.

Because OOO is configured to match the EV7, it has twice as much on-
chip cache as WS1x1. To measure the effect of the extra memory, we halved
the amount of cache in the OOO configuration (data not shown). This change
reduced OOO’s area by 41% and its performance by 17%. WS1x1 provides 20%
more performance per area than this configuration.

For most of our workloads, the WaveCache’s bottom-line single-threaded
AIPC is as good as or better than conventional superscalar designs, and achieves
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Fig. 18. Performance per unit area. The 1×1 WaveCache is the clear winner in terms of perfor-
mance per area.

this level of performance with a less complicated design and in a smaller area.
In the next two sections we extend WaveScalar’s abilities to handle conven-
tional pthread-style threads and to exploit its dataflow underpinnings to exe-
cute fine-grain threads. In these areas, the WaveCache’s performance is even
more impressive.

5. RUNNING MULTIPLE THREADS IN WAVESCALAR

The WaveScalar architecture described so far can support a single executing
thread. Modern applications such as databases and web servers use multiple
threads, both as a useful programming abstraction and to increase performance
by exposing parallelism.

Recently, manufacturers have begun placing several processors on a single
die to create chip multiprocessors (CMPs). There are two reasons for this move:
First, scaling challenges will make designing ever-larger superscalar proces-
sors infeasible. Second, commercial workloads are often more concerned with
the aggregate performance of many threads, rather than single-thread perfor-
mance. Any architecture intended as an alternative to CMPs must be able to
execute multiple threads simultaneously.

This section extends the single-threaded WaveScalar design to execute mul-
tiple threads. The key issues that WaveScalar must address are managing mul-
tiple parallel sequences of wave-ordered memory operations, differentiating be-
tween data values that belong to different threads, and allowing threads to com-
municate. WaveScalar’s solutions to these problems are all simple and efficient.
For instance, WaveScalar is the first architecture to allow programs to manage
memory ordering directly by creating and destroying memory orderings and dy-
namically binding them to a particular thread. WaveScalar’s thread-spawning
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facility is efficient enough to parallelize small loops. Its synchronization mech-
anism is also lightweight and tightly integrated into the dataflow framework.

The required changes to WaveCache to support the ISA extensions are sur-
prisingly small, and do not impact on the overall structure of the WaveCache
because the executing threads dynamically share most WaveCache processing
resources.

To evaluate the WaveCache’s multithreaded performance, we simulate a 64-
cluster design representing an aggressive “big iron” processor built in next-
generation process technology and suitable for large-scale multithreaded pro-
grams. For most Splash-2 benchmarks, the WaveCache achieves nearly linear
speedup with up to 64 concurrent threads. To place the multithreaded results
in context with contemporary designs, we compare a smaller, 16-cluster array
that could be built today with a range of multithreaded von Neumann proces-
sors from the literature. For the workloads that the studies have in common,
WaveCache outperforms the von Neumann designs by a factor of between 2 and
16.

The next two sections describe the multihthreading ISA extensions. Sec-
tion 5.3 presents the Splash-2 results and contains the comparison to multi-
threaded von Neumann machines.

5.1 Multiple Memory Orderings

As previously introduced, the wave-ordered memory interface provides support
for a single memory ordering. Forcing all threads to contend for the same mem-
ory interface, even if it were possible, would be detrimental to performance.
Consequently, to support multiple threads, we extend the WaveScalar architec-
ture to allow multiple independent sequences of ordered memory accesses, each
of which belongs to a separate thread. First, we annotate every data value with
a THREAD-ID in addition to its WAVE-NUMBER. Then, we introduce instructions to
associate memory-ordering resources with particular THREAD-IDs.

—THREAD-IDs. The WaveCache already has a mechanism for distinguishing
values and memory requests within a single thread from one another: they are
tagged with WAVE-NUMBERs. To differentiate values from different threads, we
extend this tag with a THREAD-ID and modify WaveScalar’s dataflow firing rule
to require that operand tags match on both THREAD-ID and WAVE-NUMBER. As
with WAVE-NUMBERs, additional instructions are provided to directly manipulate
THREAD-IDs. In the figures and examples throughout the rest of this article, the
notation <t, w>.d signifies a token tagged with THREAD-ID t and WAVE-NUMBER

w and having data value d .
To manipulate THREAD-IDs and WAVE-NUMBERs, we introduce several instruc-

tions that convert them to normal data values and back again. The most
powerful of these is DATA-TO-THREAD-WAVE, which sets both the THREAD-ID and
WAVE-NUMBER at once; DATA-TO-THREAD-WAVE takes the three inputs <t0, w0>.t1,
<t0, w0>.w1, and <t0, w0>.d and produces as output <t1, w1>.d . WaveScalar
also provides two instructions (DATA-TO-THREAD and DATA-TO-WAVE) to set
THREAD-IDs and WAVE-NUMBERs separately, as well as two instructions (THREAD-
TO-DATA and WAVE-TO-DATA) to extract THREAD-IDs and WAVE-NUMBERs. Together,
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all these instructions place WaveScalar’s tagging mechanism completely under
programmer control, and allow programmers to write software such as thread-
ing libraries. For instance, when the library spawns a new thread, it must
relabel the inputs with the new thread’s THREAD-ID and the WAVE-NUMBER of
the first wave in its execution. DATA-TO-THREAD-WAVE accomplishes exactly this
task.

—Managing memory orderings. Having associated a THREAD-ID with each
value and memory request, we now extend the wave-ordered memory inter-
face to enable programs to associate memory orderings with THREAD-IDs. Two
new instructions control the creation and destruction of memory orderings, in
essence creating and terminating coarse-grain threads: Respectively, these are
MEMORY-SEQUENCE-START and MEMORY-SEQUENCE-STOP.

MEMORY-SEQUENCE-START creates a new wave-ordered memory sequence for a
new thread. This sequence is assigned to a store buffer which services all mem-
ory requests tagged with the thread’s THREAD-ID and WAVE-NUMBER; requests
with the same THREAD-ID but a different WAVE-NUMBER cause a new store buffer
to be allocated.

MEMORY-SEQUENCE-STOP terminates a memory-ordering sequence. The wave-
ordered memory-system uses this instruction to ensure that all memory op-
erations in the sequence have completed before its store buffer resources are
released. Figure 19 illustrates how, using the new instructions, thread t creates
a new thread s, and how thread s executes and then terminates.

—Implementation. Adding support for multiple memory orderings requires
only small changes to the WaveCache’s microarchitecture. First, the widths
of the communication busses and operand queues must be expanded to hold
THREAD-IDs. Second, instead of storing each static instruction from the work-
ing set of a program in the WaveCache, one copy of each static instruction is
stored for each thread. This means that if two threads are executing the same
static instructions, each may map the static instructions to different PEs. Fi-
nally, the PEs must implement the THREAD-ID and WAVE-NUMBER manipulation
instructions.

—Efficiency. The overhead associated with spawning a thread directly af-
fects the granularity of extractable parallelism. In the best case, it takes just a
few cycles to spawn a thread in the WaveCache, but the average cost depends
on several issues, including contention in the network and for store buffer re-
sources. To assess this overhead empirically, we designed a controlled experi-
ment consisting of a simple parallel loop in which each iteration executes in a
separate thread. The threads have their own wave-ordered memory sequences
but do not have private stacks, so they cannot make function calls. We varied
the size of the loop body (which affects the granularity of parallelism) and the
dependence distance between memory operands, which affects the number of
threads that can execute simultaneously. We then measured speedup compared
to a serial execution of a loop doing the same work. The experiment’s goal was
to answer the following question: Given a loop body with a critical path length
of N instructions and a dependence distance that allows T iterations to run in

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 4, Publication date: May 2007.



The WaveScalar Architecture • 37

Fig. 19. Thread creation and destruction. Thread t spawns a new thread s by sending s’s THREAD-
ID s and WAVE-NUMBER u to MEMORY-SEQUENCE-START, which allocates a store buffer to handle the
first wave in the new thread. The result of the MEMORY-SEQUENCE-START instruction helps to trigger
the three DATA-TO-THREAD-WAVE instructions that set up s’s three input parameters. The inputs to
each DATA-TO-THREAD-WAVE instruction are a parameter value (d , e, or f ), the new THREAD-ID s,
and the new WAVE-NUMBER u. A token with u is produced by MEMORY-SEQUENCE-START deliberately,
to guarantee that no instructions in thread s execute until MEMORY-SEQUENCE-START has finished
allocating its store buffer. Thread s terminates with MEMORY-SEQUENCE-STOP, whose output token
<s, u>.finished guarantees that its store buffer area has been deallocated.

parallel, can the WaveCache speed-up execution by spawning a new thread for
every loop iteration?

Figure 20 is a contour plot of speedup of the loop as a function of its loop
size (critical path length in ADD instructions is on the horizontal axis) and
dependence distance (independent iterations, the vertical axis). Contour lines
are shown for speedups of 1× (no speedup), 2×, and 4×. The area above each line
is a region of program speedup at or above the labeled value. The data shows
that the WaveScalar overhead of creating and destroying threads is so low that
for loop bodies of only 24 dependent instructions and a dependence distance of 3,
it becomes advantageous to spawn a thread to execute each iteration (“A” in the
figure). A dependence distance of 10 reduces the size of profitably parallelizable
loops to only 4 instructions (labeled “B”). Increasing the number of instructions
to 20 quadruples performance (“C”).

5.2 Synchronization

The ability to efficiently create and terminate pthread-style threads [Nichols
et al. 1996], as described in the previous subsection, provides only part

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 4, Publication date: May 2007.



38 • S. Swanson et al.

Fig. 20. Thread creation overhead. Contour lines for speedups of 1× (no speedup), 2×, and 4×.
The area above each line is a region of program speedup at or above the stated value. Spawning
wave-ordered threads in the WaveCache is lightweight enough to profitably parallelize loops with
as few as ten instructions in the loop body if four independent iterations execute.

of the functionality required to make multithreading useful. Independent
threads must also synchronize and communicate with one another. To this end,
WaveScalar provides a memory fence instruction that allows WaveScalar to en-
force a relaxed consistency model, and a specialized instruction that models a
hardware queue lock.

5.2.1 Memory Fence. Wave-ordered memory provides a single thread with
a consistent view of memory, since it guarantees that the results of earlier
memory operations are visible to later ones. In some situations, such as prior to
taking or releasing a lock, a multithreaded processor must guarantee that the
results of a thread’s memory operations are visible to other threads. We add to
the ISA an additional instruction, namely MEMORY-NOP-ACK, that provides this
assurance by acting as a memory fence. MEMORY-NOP-ACK prompts the wave-
ordered interface to commit the thread’s prior loads and stores to memory,
thereby ensuring their visibility to other threads and providing WaveScalar
with a relaxed consistency model [Adve and Gharachorloo 1996]. The interface
then returns an acknowledgment which the thread can use to trigger execution
of its subsequent instructions.

5.2.2 Interthread Synchronization. Most commercially deployed multipro-
cessors and multithreaded processors provide interthread synchronization
through the memory system via primitives such as TEST-AND-SET, COMPARE-
AND-SWAP, or LOAD-LOCK/STORE-CONDITIONAL. Some research efforts also propose
building complete locking mechanisms in hardware [Goodman et al. 1989;
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Fig. 21. Tag matching. Most instructions, like the ADD shown here at left, fire when the thread
and wave numbers on both input tokens match. Inputs to THREAD-COORDINATE (right) match if the
THREAD-ID of the token on the second input matches the data value of the token on the first input.

Tullsen et al. 1999]. Such queue locks offer many performance advantages in
the presence of high lock contention.

In WaveScalar, we add support for queue locks in a way that constrains nei-
ther the number of locks nor the number of threads that may contend for the
lock. This support is embodied in a synchronization instruction called THREAD-
COORDINATE, which synchronizes two threads by passing a value between them.
THREAD-COORDINATE is similar in spirit to other lightweight synchronization
primitives [Keckler et al. 1998; Barth et al. 1991], but tailored to WaveScalar’s
dataflow framework.

As Figure 21 illustrates, THREAD-COORDINATE requires slightly different
matching rules.4 All WaveScalar instructions except THREAD-COORDINATE fire
when the tags of two input values match, and they produce outputs with the
same tag (Figure 21, left). For example, in the figure, both the input tokens and
the result have THREAD-ID t0 and WAVE-NUMBER w0.

In contrast, THREAD-COORDINATE fires when the data value of a token at its
first input matches the THREAD-ID of a token at its second input. This is depicted
on the right side of Figure 21, where the data value of the left input token and
the THREAD-ID of the right input token are both t1. THREAD-COORDINATE generates
an output token with the THREAD-ID and WAVE-NUMBER from the first input and
the data value from the second input. In Figure 21, this produces an output
of <t0, w0>.d . In essence, THREAD-COORDINATE passes the second input’s value
d to the thread of the first input t0. Since the two inputs come from different
threads, this forces the receiving thread (t0 in this case) to wait for the data
from the sending thread t1 before continuing execution.

To support THREAD-COORDINATE in hardware, we augment the tag-matching
logic at each PE. We add two counters at each PE to relabel the WAVE-NUMBERs of
the inputs to THREAD-COORDINATE instructions so that they are processed in FIFO
order. Using this relabeling, the matching queues naturally form a serializing
queue with efficient constant time access and no starvation.

Although it is possible construct many kinds of synchronization objects
using THREAD-COORDINATE, for brevity we only illustrate a simple mutex (see

4Some previous dataflow machines altered the dataflow firing rule for other purposes. For example,
Sigma-1 used “sticky” tags to prevent the consumption of loop-invariant data and “error” tokens
to swallow values of instructions that incurred exceptions [Shimada et al. 1984]. Monsoon’s M-
structure store units had a special matching rule to enforce load-store order [Papadopoulos and
Traub 1991].
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Fig. 22. A mutex. THREAD-COORDINATE is used to construct a mutex, and the value tm identifies the
mutex.

Figure 22), although we have also implemented barriers and conditional vari-
ables. In this case, THREAD-COORDINATE is the vehicle by which a thread releasing
a mutex passes control to another thread wishing to acquire it.

The mutex in Figure 22 is represented by a THREAD-ID tm, although it is not
a thread in the usual sense; instead, tm’s sole function is to uniquely name the
mutex. A thread t1 that has locked mutex tm releases it in two steps (right side
of the figure). First, t1 ensures that the memory operations it executed inside
the critical section have completed by executing MEMORY-NOP-ACK. Then, t1 uses
DATA-TO-THREAD to create the token <tm, u>.tm, which it sends to the second
input port of THREAD-COORDINATE, thereby releasing the mutex.

Another thread (t0 in the figure) can attempt to acquire the mutex by sending
<t0, w>.tm (the data is the mutex) to THREAD-COORDINATE. This token will either
find the token from t1 waiting for it (i.e., the lock is free) or await its arrival (i.e.,
t1 still holds the lock). When the release token from t1 and the request token
from t0 are both present, THREAD-COORDINATE will find that they match according
to the rules discussed previously, and it will then produce a token <t0, w>.tm.
If all instructions in the critical section guarded by mutex tm depend on this
output token (directly or via a chain of data dependences), thread t0 cannot
execute the critical section until THREAD-COORDINATE produces it.

5.3 Splash-2

In this section, we evaluate WaveScalar’s multithreading facilities by executing
coarse-grain, multithreaded applications from the Splash-2 benchmark suite
(see Table III). We use the toolchain and simulator described in Section 4.1.
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Fig. 23. Splash-2 on the WaveCache. We evaluate each of our Splash-2 benchmarks on the baseline
WaveCache with between 1 and 128 threads. The bars represent speedup in total execution time.
The numbers above the single-threaded bars are the IPC for that configuration. Two benchmarks,
water and radix, cannot utilize 128 threads with the input dataset we use, so that value is absent.

We simulate an 8x8 array of clusters to model an aggressive, future-generation
design. Using the results from the RTL model described in Section 3.7 scaled
to 45nm, we estimate that the processor occupies ∼290mm2, with an on-chip
16MB L2.

After skipping past initialization, we measure the execution of parallel
phases of the benchmarks. Our performance metric is execution-time speedup
relative to a single thread executing on the same WaveCache. We also com-
pare WaveScalar speedups to those calculated by other researchers for other
threaded architectures. Component metrics help explain these bottom-line re-
sults where appropriate.

—Evaluation of a multithreaded WaveCache. Figure 23 contains speedups
of multithreaded WaveCaches for all six benchmarks as compared to their
single-threaded running times. On average, the WaveCache achieves near-
linear speedup (25×) for up to 32 threads. Average performance increases sub-
linearly with 128 threads, up to 47× speedup with an average IPC of 88.

Interestingly, increasing beyond 64 threads for ocean and raytrace reduces
performance. The drop-off occurs because of WaveCache congestion from the
larger instruction working sets and L1 data evictions due to capacity misses. For
example, going from 64 to 128 threads, ocean suffers 18% more WaveCache in-
struction misses than would be expected from the additional compulsory misses.
In addition, the operand-matching cache miss rate increases by 23%. Finally,
the data cache miss rate, essentially constant for up to 32 threads, doubles
as the number of threads scales to 128. This additional pressure on the mem-
ory system increases ocean’s memory access latency by a factor of 11. Since
the applications scale almost linearly, this data demonstrates that the reduced
performance is due primarily to increased contention for WaveCache resources.
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The same factors that cause the performance of ocean and raytrace to suf-
fer when the number of threads exceeds 64 also reduce the rate of speedup
improvement for other applications as the number of threads increases. For
example, the WaveCache instruction miss rate quadruples for lu when the
number of threads increases from 64 to 128, curbing speedup. In contrast,
FFT, with its relatively small per-thread working set of instructions and
data, does not tax these resources and so achieves better speedup with up to
128 threads.

—Comparison to other threaded architectures. We compare the performance
of WaveCache and a few other architectures on three Splash-2 kernels: lu, fft,
and radix. We present results from several sources in addition to our own Wave-
Cache simulator. For CMP configurations, we performed our own experiments
using a simple in-order core (scmp), as well as measurements from Lo et al.
[1997] and Ekman and Stenström [2003]. Comparing data from such diverse
sources is difficult, and drawing precise conclusions about the results is not
possible; however, we believe that the measurements are still valuable for the
broad trends they reveal.

To make the comparison as equitable as possible, we use a smaller, 4x4 Wave-
Cache for these studies. Our RTL model gives an area of 253mm2 for this design
(we assume an off-chip 16MB L2 cache distributed in banks around the edge
of the chip and increase its access time from 10 to 20 cycles). While we do not
have precise area measurements for the other architectures, the most aggres-
sive configurations (i.e., most cores or functional units) are in the same ballpark
with respect to size.

To facilitate the comparison of performance numbers from these different
sources, we normalized all performance numbers to the performance of a simu-
lated scalar processor with a five-stage pipeline. The processor had 16KB data
and instruction caches, and a 1MB L2 cache, all four-way set-associative. The L2
hit latency was 12 cycles, and the memory access latency of 200 cycles matched
that of the WaveCache.

Figure 24 shows the results. Stacked bars represent the increase in perfor-
mance contributed by executing with more threads. The bars labeled ws depict
the performance of the WaveCache. The bars labeled scmp represent the per-
formance of a CMP whose cores are the scalar processors described previously
with 1MB of L2 cache per processor core. These processors are connected via
a shared bus between private L1 caches and a shared L2 cache. Memory is
sequentially consistent, and coherence is maintained by a four-state snoopy
protocol. Up to four accesses to the shared memory may overlap. For the CMPs,
the stacked bars represent increased performance from simulating more pro-
cessor cores. The 4- and 8-core bars loosely model Hydra [Hammond et al. 2000]
and a single Piranha chip [Barroso et al. 2000], respectively.

The bars labeled smt8, cmp4, and cmp2 are the 8-threaded SMT and 4- and 2-
core out-of-order CMPs from Lo et al. [1997]. We extracted their running times
from data provided by the authors. Memory latency is low on these systems
(dozens of cycles) compared to expected future latencies, and all configurations
share the L1 instruction and data caches.
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Fig. 24. Performance comparison of various architectures. Each bar represents performance of
a given architecture for between 1 and 32 threads. We normalize running times to that of a
single-issue scalar processor with a high memory access latency, and compare speedups of var-
ious multithreaded architectures. Specifically, ws is a 4 × 4 WaveCache, and scmp is a CMP of the
aforementioned scalar processor on a shared bus with MESI coherence. Respectively, smt8, cmp4,
and cmp2 are an 8-threaded SMT, a 4-core out-of-order CMP, and a 2-core OOO CMP with similar
resources, from Lo et al. [1997]. Finally, ekman [Ekman and Stenström 2003] is a study of CMPs
in which the number of cores is varied, but the number of execution resources (functional units,
issue width, etc.) is fixed.

To compare the results from Ekman and Stenström [2003] (labeled ekman
in the figure), which are normalized to the performance of their 2-core CMP,
we simulated a superscalar with a configuration similar to one of these cores
and halved the reported execution time; we then used this figure as an esti-
mate of absolute baseline performance. In Ekman and Stenström [2003], the
authors fixed the execution resources for all configurations, and partitioned
them among an increasing number of decreasingly wide CMP cores. For exam-
ple, the 2-thread component of the ekman bars is the performance of a 2-core
CMP in which each core has a fetch width of 8, while the 16-thread component
represents the performance of 16 cores with a fetch width of 1. Latency to main
memory is 384 cycles, and latency to the L2 cache is 12 cycles.

The graph shows that WaveCache can outperform the other architectures at
high thread counts. It executes 1.9× to 6.13× faster than scmp, 1.16× to 1.56×
faster than smt8, and 5.7× to 16× faster than the various out-of-order CMP con-
figurations. Component metrics show that WaveCache’s performance benefits
arise from its use of point-to-point communication, rather than a system-wide
broadcast mechanism, and from the latency-tolerance of its dataflow execution
model. The former enables scaling to large numbers of clusters and threads,
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while the latter helps mask the increased memory latency incurred by the di-
rectory protocol and high load-use penalty on the L1 data cache.

The performance of all systems eventually plateaus when some bottleneck
resource saturates. For scmp this resource is shared L2 bus bandwidth. Bus
saturation occurs at 16 processors for LU, 8 for FFT, and 2 for RADIX. It is
likely that future CMPs will address this limitation by moving away from bus-
based interconnects, and it would be interesting to compare the performance of
those systems with the WaveCache. For other von Neumann CMP systems, the
fixed allocation of execution resources is the limit [Lo et al. 1997], resulting in
a decrease in per-processor IPC. For example, in ekman, the per-processor IPC
drops by 50% as the number of processors increases from 4 to 16 for RADIX
and FFT. On the WaveCache, speedup plateaus when the working set of all
threads equals its instruction capacity. This offers WaveCache the opportunity
to tune the number of threads to the amount of on-chip resources. With their
static partitioning of execution resources across processors, this option is absent
for CMPs; and the monolithic nature of SMT architectures prevents scaling to
large numbers of thread contexts.

5.4 Discussion

The WaveCache has clear promise as a multiprocessing platform. In the 90nm
technology available today, we could easily build a WaveCache that would out-
perform a range of von Neumann-style alternatives, and as we mentioned ear-
lier, scaling the WaveCache to future process technologies is straightforward.
Scaling multithreaded WaveScalar systems beyond a single die is also feasi-
ble. WaveScalar’s execution model makes and requires no guarantees about
communication latency, so using several WaveCache processors to construct a
larger computing substrate is a possibility.

In the next section we investigate the potential of WaveScalar’s core dataflow
execution model to support a second, finer-grain threading model. These fine-
grain threads utilize a simpler unordered memory interface, and can provide
huge performance gains for some applications.

6. WAVESCALAR’S DATAFLOW SIDE

The WaveScalar instruction set we have described so far replicates the func-
tionality of a von Neumann processor or a CMP composed of von Neumann
processors. Providing these capabilities is essential if WaveScalar is to be a vi-
able alternative to von Neumann architectures, but this is not the limit of what
WaveScalar can do.

This section exploits WaveScalar’s dataflow underpinning to achieve two
things that conventional von Neumann machines cannot. Firstly, it provides
a second unordered memory interface that is similar in spirit to the token-
passing interface in Section 2.2.6. The unordered interface is built to express
memory parallelism. It bypasses the wave-ordered store buffer and accesses
the L1 cache directly, avoiding the overhead of wave-ordering hardware. Be-
cause unordered operations do not go through the store buffer, they can ar-
rive at the L1 cache in any order or in parallel. As we describe next, a
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programmer can restrict this ordering by adding edges to a program’s dataflow
graph.

Secondly, the WaveCache can support very fine-grain threads. On von
Neumann machines the amount of hardware devoted to a thread is fixed (e.g.,
one core on a CMP or one thread context on an SMT machine), and the num-
ber of threads that can execute at once is relatively small. On WaveCache, the
number of physical store buffers limits the number of threads that use wave-
ordered memory, but any number of threads can use the unordered interface at
one time. In addition, spawning these threads is very inexpensive. As a result,
it is feasible to break a program up into hundreds of parallel fine-grain threads.

We begin by describing the unordered memory interface. Then we use it
in addition to fine-grain threads to express large amounts of parallelism in
three application kernels. Finally, we combine the two styles of programming
to parallelize equake from the Spec2000 floating point suite, and demonstrate
that by combining WaveScalar’s ability to run both coarse-grain von Neumann-
style and fine-grain dataflow-style threads, we can achieve performance greater
than utilizing either alone, in this case, a 9× speedup.

6.1 Unordered Memory

As described, WaveScalar’s only mechanism for accessing memory is the wave-
ordered memory interface. The interface is necessary for executing conventional
programs, but can only express limited parallelism (i.e., by using ripple num-
bers). WaveScalar’s unordered interface makes a different tradeoff: It cannot
efficiently provide the sequential ordering that conventional programs require,
but excels at expressing parallelism because it eliminates unnecessary order-
ing constraints and avoids contention for the store buffer. Accordingly, it allows
programmers or compilers to express and exploit memory parallelism when
they know it exists.

Like all other dataflow instructions, unordered operations are only con-
strained by their static data dependences. This means that if two unordered
memory operations are neither directly nor indirectly data-dependent, they can
execute in any order. Programmers and compilers can exploit this fact to express
parallelism between memory operations that can safely execute out-of-order;
however, they need a mechanism to enforce ordering among those that cannot.

To illustrate, consider a store and a load that could potentially access the
same address. If, for correct execution, the load must see the value written
by the store (i.e., a read-after-write dependence), then the thread must ensure
that the load does not execute until the store has finished. If the thread uses
wave-ordered memory, the store buffer enforces this constraint; however, since
unordered memory operations bypass the wave-ordered interface, unordered
accesses must use a different mechanism.

To ensure that the load executes after the store, there must be a data de-
pendence between them. This means that memory operations must produce an
output token that can be passed to the operations that follow. Loads already
do this because they return a value from memory. We modify stores to produce
a value when they complete. The value that the token carries is unimportant,
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Fig. 25. Fine-grain performance. These graphs compare the performance of our three implemen-
tation styles. The graph on the left shows execution-time speedup relative to the serial coarse-grain
implementation. The graph on the right compares the work per cycle achieved by each implemen-
tation measured in multiply-accumulates for MMUL and FIR and in character comparisons for
LCS.

since its only purpose is to signal that the store has completed. In our implemen-
tation it is always zero. We call unordered loads and stores, LOAD-UNORDERED

and STORE-UNORDERED-ACK, respectively.

6.1.1 Performance Evaluation. To demonstrate the potential of unordered
memory, we implemented three traditionally parallel but memory-intensive
kernels—matrix multiply (MMUL), longest common subsequence (LCS), and a
finite input response filter (FIR)—in three different styles and compared their
performance. Serial coarse-grain uses a single thread written in C. Parallel
coarse-grain is a coarse-grain parallelized version, also written in C, that uses
the coarse-grain threading mechanisms described in Section 5. Unordered uses
a single coarse-grain thread written in C to control a pool of fine-grain threads
that use unordered memory, written in WaveScalar assembly. We call these
unordered threads.

For each application, we tuned the number of threads and array tile size to
achieve the best performance possible for a particular implementation. MMUL
multiplies 128×128 entry matrices, LCS compares strings of 1,024 characters,
and FIR filters 8,192 inputs with 256 taps. They use between 32 (FIR) and 1,000
(LCS) threads. Each version is run to completion.

Figure 25 depicts the performance of each algorithm executing on the 8x8
WaveCache described in Section 5.3. On the left, it shows speedup over the serial
implementation, and on the right, average units of work completed per cycle.
For MMUL and FIR, the unit of work selected is a multiply-accumulate, while
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for LCS, it is a character comparison. We use application-specific performance
metrics because they are more informative than IPC when comparing the three
implementations.

For all three kernels, the unordered implementations achieve superior per-
formance because they exploit more parallelism. The benefits stem from two
sources. First, unordered implementations can use more threads. It would be
easy to write a pthread-based version that spawns hundreds or thousands
of threads, but the WaveCache cannot execute this many ordered threads at
once, since there are not enough store buffers. Secondly, within each thread
the unordered threads’ memory operations can execute in parallel. As a result,
fine-grain unordered implementations exploit more inter- and intrathread par-
allelism, allowing them to exploit many PEs at once. In fact, the numerous
threads that each kernel spawns can easily fill and utilize the entire Wave-
Cache. MMUL is the best example; it executes 27 memory operations per cycle
on average (about one per every two clusters), compared to just six for the
coarse-grain version.

FIR and LCS are less memory-bound than MMUL because they load values
(input samples for FIR and characters for LCS) from memory only once and
then pass them from thread to thread. For these two applications the limit-
ing factor is intercluster network bandwidth. Both algorithms involve a great
deal of interthread communication, and since the computation uses the entire
8 × 8 array of clusters, intercluster communication is unavoidable. For LCS,
27% of the messages travel across the intercluster network, compared to 0.4–
1% for the single-threaded and coarse-grain versions, and the messages move
3.6× more slowly due to congestion. FIR displays similar behavior. A better
placement algorithm could alleviate much of this problem and further improve
performance by placing the instructions for communicating threads near one
another.

6.2 Mixing Threading Models

In Section 5, we explained the extensions to WaveScalar that support coarse-
grain, pthread-style threads. In the previous section, we introduced two
lightweight memory instructions that enable fine-grain threads and unordered
memory. In this section, we combine these two models; the result is a hybrid
programming model that enables coarse- and fine-grain threads to coexist in
the same application. We begin with two examples that illustrate how ordered
and unordered memory operations can be used together. Then, we exploit all of
our threading techniques to improve the performance of Spec2000’s equake by
a factor of nine.

6.2.1 Mixing Ordered and Unordered Memory. A key strength of our or-
dered and unordered memory mechanisms is their ability to coexist in the same
application. Sections of an application that have independent and easily analyz-
able memory access patterns (e.g., matrix manipulations and stream process-
ing) can use the unordered interface, while difficult-to-analyze portions (e.g.,
pointer-chasing codes) can use wave-ordered memory. In this section, we take
a detailed look at how this is achieved.
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Fig. 26. Transitioning between memory interfaces. The transition from ordered to unordered mem-
ory and back again.

We describe two ways to combine ordered and unordered memory accesses.
The first turns off wave-ordered memory, uses the unordered interface, and then
reinstates wave-ordering. The second, more flexible approach allows ordered
and unordered interfaces to exist simultaneously.

—Example 1. Figure 26 shows a code sequence that transitions from wave-
ordered memory to unordered memory and back again. The process is quite
similar to terminating and restarting a pthread-style thread. At the end of the
ordered code, a THREAD-TO-DATA instruction extracts the current THREAD-ID, and
a MEMORY-SEQUENCE-STOP instruction terminates the current memory ordering.
MEMORY-SEQUENCE-STOP outputs a value, labeled finished in the figure, after
all preceding wave-ordered memory operations have completed. The finished
token triggers the dependent unordered memory operations, ensuring that they
do not execute until the preceding ordered-memory accesses have completed.

After the unordered portion has executed, a MEMORY-SEQUENCE-START creates
a new, ordered memory sequence using the THREAD-ID extracted previously. In
principle, the new thread need not have the same THREAD-ID as the original
ordered thread. In practice, however, this is convenient, as it allows values to
flow directly from the first ordered section to the second (the curved arcs on the
left side of the figure) without THREAD-ID manipulation instructions.

—Example 2. In many cases, a compiler may be unable to determine the
targets of some memory operations. The wave-ordered memory interface must
remain intact to handle these hard-to-analyze accesses. Meanwhile, unordered
memory accesses from analyzable operations can simply bypass the wave-
ordering interface. This approach allows the two memory interfaces to coexist
in the same thread.
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Fig. 27. Using ordered and unordered memory together. A simple example where MEMORY-NOP-ACK

is used to combine ordered and unordered memory operations to express memory parallelism.

Figure 27 shows how the MEMORY-NOP-ACK instruction from Section 5.2.1 al-
lows programs to take advantage of this technique. Recall that MEMORY-NOP-ACK

is a wave-ordered memory operation that operates like a memory fence instruc-
tion, returning a value when it completes. We use it here to synchronize ordered
and unordered memory accesses. In function foo, the loads and stores that copy
*v into t can execute in parallel, but must wait for the store to p, which could
point to any address. Likewise, the load from address q cannot proceed until the
copy is complete. The wave-ordered memory system guarantees that the store
to p, the two MEMORY-NOP-ACKs, and the load from q fire in the order shown
(top-to-bottom). The data dependences between the first MEMORY-NOP-ACK and
the unordered loads at left ensure that the copy occurs after the first store. The
ADD instruction simply coalesces the outputs from the two STORE-UNORDERED-
ACK instructions into a trigger for the second MEMORY-NOP-ACK which ensures
that the copy is complete before the final load.

6.2.2 A Detailed Example: equake. To demonstrate that mixing the two
threading styles is not only possible but also profitable, we optimized equake
from the SPEC2000 benchmark suite. equake spends most of its time in the
function smvp, with the bulk of its remainder confined to a single loop in the
program’s main function. In the discussion to follow, we refer to this loop in
main as sim.

We exploit both ordered coarse-grain and unordered fine-grain threads in
equake. The key loops in sim are data-independent, so we parallelized them
using coarse-grain threads that process a work queue of blocks of iterations.
This optimization improves equake’s overall performance by a factor of 1.6.

Next, we used the unordered memory interface to exploit fine-grain paral-
lelism in smvp. Two opportunities present themselves. First, each iteration
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of smvp’s nested loops loads data from several arrays. Since these arrays are
read-only, we used unordered loads to bypass wave-ordered memory, allowing
loads from several iterations to execute in parallel. Second, we targeted a set of
irregular cross-iteration dependences in smvp’s inner loop that are caused by
updating an array of sums. These cross-iteration dependences make it difficult
to profitably coarse-grain-parallelize the loop. However, the THREAD-COORDINATE

instruction lets us extract fine-grain parallelism despite these dependences,
since it efficiently passes array elements from PE to PE and guarantees that
only one thread can hold a particular value at-a-time. This idiom is inspired by
M-structures [Barth et al. 1991], a dataflow-style memory element. Rewriting
smvp with unordered memory and THREAD-COORDINATE improves overall perfor-
mance by a factor of 7.9.

When both coarse-grain and fine-grain threading are used together, equake
speeds-up by a factor of 9.0. This result demonstrates that coarse-grain,
pthread-style threads and fine-grain unordered threads can be combined to
accelerate a single application.

7. CONCLUSION

The WaveScalar instruction set and WaveCache architecture demonstrate that
dataflow processing is a worthy alternative to the von Neumann model and
conventional scalar designs for both single- and multithreaded workloads.

Like all dataflow ISAs, WaveScalar allows programmers and compilers to ex-
plicitly express parallelism among instructions. Unlike previous dataflow mod-
els, WaveScalar also includes a memory-ordering scheme, namely wave-ordered
memory, that allows it to efficiently execute programs written in conventional
imperative programming languages.

WaveScalar’s multithreading facilities support a range of threading styles.
For conventional pthread-style threads, WaveScalar provides thread creation
and termination instructions, multiple independent wave-ordered memory
orderings, a lightweight memoryless synchronization primitive, and a memory
fence that provides a relaxed consistency model. For finer-grain threads,
WaveScalar can disable memory ordering for specific memory accesses,
allowing the programmer or compiler to express large amounts of memory
parallelism, and enabling a very fine-grain style of multithreading. Finally,
WaveScalar allows both types of threads to coexist in a single application and
interact smoothly.

The WaveCache architecture exploits WaveScalar’s decentralized execution
model to eliminate broadcast communication and centralized control. Its tile-
based design makes it scalable and significantly reduces the architecture’s com-
plexity. Our RTL model shows that a WaveCache capable of efficiently run-
ning real-world multithreaded applications would occupy only 253mm2 in cur-
rently available process technology, while a single-threaded version requires
only 48mm2.

Our experimental results show that the WaveCache performs compara-
bly to a modern out-of-order design for single-threaded codes and provides
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21% more performance per area. For multithreaded Splash2 benchmarks, the
WaveCache achieves 30–83× speedup over single-threaded versions, and out-
performs a range of von Neumann-style multithreaded processors. By ex-
ploiting our new unordered memory interface, we demonstrated that hun-
dreds of fine-grain threads on the WaveCache can complete up to 13 multiply-
accumulates per cycle for selected algorithm kernels. Finally, we combined
all of our new mechanisms and threading models to create a multigranu-
lar parallel version of equake which is faster than either threading model
alone.
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