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ABSTRACT
In response to current technology scaling trends, architects
are developing a new style of processor, known as spatial
computers. A spatial computer is composed of hundreds
or even thousands of simple, replicated processing elements
(or PEs), frequently organized into a grid. Several current
spatial computers, such as TRIPS, RAW, SmartMemories,
nanoFabrics and WaveScalar, explicitly place a program’s
instructions onto the grid.

Designing instruction placement algorithms is an enor-
mous challenge, as there are an exponential (in the size of
the application) number of different mappings of instruc-
tions to PEs, and the choice of mapping greatly affects pro-
gram performance. In this paper we develop an instruction
placement performance model which can inform instruction
placement. The model comprises three components, each
of which captures a different aspect of spatial computing
performance: inter-instruction operand latency, data cache
coherence overhead, and contention for processing element
resources. We evaluate the model on one spatial computer,
WaveScalar, and find that predicted and actual performance
correlate with a coefficient of −0.90. We demonstrate the
model’s utility by using it to design a new placement al-
gorithm, which outperforms our previous algorithms. Al-
though developed in the context of WaveScalar, the model
can serve as a foundation for tuning code, compiling soft-
ware, and understanding the microarchitectural trade-offs of
spatial computers in general.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Mod-
eling—Model Development ; B.8.2 [Hardware]: Perfor-
mance and Reliability—Performance Analysis and Design
Aids

General Terms
Experimentation, Measurement, Performance
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1. INTRODUCTION
Today’s manufacturing technologies provide an enormous

quantity of computational resources. Computer architects
are currently exploring how to convert these resources into
improvements in application performance. Despite signifi-
cant differences in execution models and underlying process
technology, five recently proposed architectures - nanoFab-
rics [18], TRIPS [34], RAW [23], SmartMemories [26], and
WaveScalar [39] - share the task of mapping large portions
of an application’s binary onto a collection of processing el-
ements. Once mapped, the instructions execute “in place”,
explicitly sending data between the processing elements. Re-
searchers call this form of computation distributed ILP [34,
23, 39] or spatial computing [18].

Good instruction placement is critical to spatial comput-
ing performance. Our research on WaveScalar indicates that
a poor placement can decrease performance by as much as a
factor of five. Finding a good placement is hard, because
there are an exponential (in the size of the application)
number of possible mappings. How can developers, com-
piler writers, or microarchitects identify the ones that will
execute quickly? Searching this enormous space requires a
solid understanding of how instruction placement influences
performance. In this paper we develop a model of placement
performance to study this issue.

To develop the model, we focus on a particular spatial
computer, WaveScalar. To accurately predict instruction
placement performance, we construct a unified model that
considers several factors that contribute to overall perfor-
mance. Our model comprises three separate components,
each of which captures a different aspect of spatial com-
putation: inter-instruction operand latency, data cache co-
herence overhead, and contention for processing element re-
sources. Our unified model combines these components in
proportion to their relative contribution to overall perfor-
mance.

The model estimates performance using three inputs: (1)
the placement in question, i.e., a mapping of instructions
in the application to processing elements, (2) a profile of
application execution behavior, and (3) the spatial com-
puter’s microarchitectural configuration and timing param-
eters. These inputs are common to all spatial comput-
ers, which will allow this approach to generalize beyond
WaveScalar.
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The paper first develops a model of each component of
placement performance in isolation. Using a variety of appli-
cations and potential placements, we evaluate each of these
component models, using specially configured versions of
the WaveScalar microarchitectural simulator. Each config-
uration accurately simulates the hardware resources of the
component in question but idealizes all other resources. We
validate each component model by showing that it correlates
with its component-isolating simulation.

We then combine these component models to pro-
duce a single unified model of placement performance on
WaveScalar. The unified model predicts the effect of in-
struction placement when all microarchitectural resources
are accurately simulated. The combined model produces
performance predictions that correlate to simulation perfor-
mance with a coefficient of −0.90.

To evaluate our model’s predictive power on applications
that are not part of our workload, we use a standard machine
learning evaluation technique in which we partition our data
points into training and test sets. We derive a model from
each of the training sets, and evaluate its predictive capabil-
ity on its corresponding test set. Evaluated in this way, our
model’s predicted layout performance correlates to actual
performance with a coefficient of −0.82.

The model indicates that PE resource constraints have
the greatest effect on placement performance on WaveScalar,
followed by inter-instruction operand latency, and finally by
cache coherence overhead. These results are useful in several
ways. For example, the model provides a quickly calculable
objective function that an optimizer could minimize to find
an application mapping that maximizes IPC. One could also
use the model to design an instruction placement algorithm
which is based on the factors that are most important to
performance. In Section 6 we do just this and develop an
improved placement algorithm by combining two existing al-
gorithms that optimize for the two most important compo-
nents of placement performance, as dictated by the model.
A third strategy is to use the model to guide microarchi-
tectural optimizations or to make the microarchitecture less
placement-sensitive.

In the following section we provide an overview of the
salient features of WaveScalar. In Section 3 we present the
methodology used to develop and validate our placement
performance model. Section 4 explains and validates each
of the individual components, and Section 5 combines them
into a unified model. Section 6 describes an improved in-
struction placement algorithm we developed that is based
on this model. Section 7 explores related work on perfor-
mance modeling, layout of computation, and spatial com-
puters. Finally in Section 8, we draw our conclusions and
discuss future work in this area.

2. BACKGROUND
Before introducing our instruction placement model, we

summarize the WaveScalar architecture and its processor
implementation. We confine our discussion to those features
that provide a context for modeling instruction placement
performance, as presented in this paper. A more in-depth
description appears in other publications [39, 40, 41].
Instruction set architecture: WaveScalar is a dataflow
architecture. Like all dataflow architectures (e.g. [12, 11,
22, 36, 20, 32, 33, 19, 31, 10, 2]), its binary is a program’s
dataflow graph. Each node in the graph is a single instruc-
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Figure 1: The WaveScalar Processor: The hierar-
chical organization of the WaveScalar processor.

tion which computes a value and sends it to the instructions
that consume it. Instructions execute after all input operand
values have arrived, according to a principle known as the
dataflow firing rule [12, 11].

WaveScalar supports a memory model which commits
memory accesses in program order. Equipped with archi-
tectural building blocks, called waves, which globally order
pieces of the control flow graph, and an architectural mech-
anism, called wave-ordered memory, which orders memory
operations within a wave, WaveScalar enforces the correct,
global ordering of a thread’s memory operations. This en-
ables it to execute applications written in imperative lan-
guages, such as C or C++. Other work describes the details
of this mechanism [39].
Microarchitecture: Conceptually, each static instruction
in a WaveScalar program executes in a separate processing
element (PE). Building a PE for each static instruction is
both impossible and wasteful, so, in practice, WaveScalar
dynamically binds multiple instructions to a fixed number
of PEs, and swaps them in and out on demand.

The WaveScalar processor is a grid of simple processing
elements. Each PE has five pipeline stages and contains
a functional unit, specialized memories to hold operands,
and logic to control instruction execution and communica-
tion. Each PE also contains buffering and storage for several
different static instructions, although only one can execute
in any given cycle. PEs determine locally when their in-
structions can execute, contributing to the scalability of the
WaveScalar processor design.

To reduce communication costs within the grid, PEs are
organized hierarchically, as depicted in Figure 1. Two PEs
are first coupled, forming a pod ; PEs in a pod share by-
pass logic, so that dependent instructions in a pod can ex-
ecute back to back. Four pods comprise a domain. Within
a domain producer-consumer latency is four cycles. Four
domains, plus wave-ordered memory hardware and a tradi-
tional L1 data cache, make up a cluster. A single cluster,
combined with an L2 cache and traditional main memory is
sufficient to run any WaveScalar program. To build larger
machines, an on-chip network connects multiple clusters and
a directory-based, MESI-like protocol maintains cache co-
herence. The coherence directory and the L2 cache are dis-
tributed around the edge of the grid of clusters.
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PEs per Domain 8 (4 pods) Domains / Cluster 4
PE Input Queue 16 entries, 4 banks Network Latency within Pod: 1 cycle
PE Output Queue 8 entries, 4 ports (2r, 2w) within Domain: 4 cycles
PE Pipeline Depth 5 stages within Cluster: 7 cycles

inter-Cluster: 7 + cluster dis-
tance

L1 Caches 32KB, 4-way set associative,
128B line, 4 accesses per cycle

L2 Cache 16 MB shared, 1024B line, 4-way
set associative, 20 cycle access

Main RAM 1000 cycle latency Network Switch 4-port, bidirectional

Table 1: Microarchitectural parameters of the WaveScalar processor

Table 1 contains the WaveScalar processor microarchitec-
ture configuration parameters used for this study.

3. METHODOLOGY
This section describes our methodology for developing an

instruction placement model for the WaveScalar processor.
The overall goal is to construct a function that takes three
pieces of information – (1) a proposed instruction placement
for an application, (2) a simple execution profile of the ap-
plication, and (3) the microarchitectural parameters of the
WaveScalar processor – and computes a prediction of place-
ment quality with respect to performance. Once this func-
tion is found, we can quickly and easily evaluate the quality
of alternative instruction placements.

We begin by separately modeling several factors that
affect performance and vary with instruction placement.
These factors are: inter-instruction operand latency, the co-
herence cost of sharing data in memory, and contention for
instruction memory in individual PEs. Each becomes a com-
ponent of the overall instruction placement model. Section 4
describes each in detail.

We exclude other potential factors that we found have lit-
tle or no effect on the performance of the WaveScalar proces-
sor. Examples include main memory latency and network
bandwidth. In WaveScalar, the amount of time spent ac-
cessing memory is the same no matter where in the grid an
instruction is located. Likewise, WaveScalar is sufficiently
provisioned in its network bandwidth that this factor also
does not affect performance.

We evaluate each of the components using a cycle-
accurate, event-driven WaveScalar simulator, whose mi-
croarchitecture has been idealized with respect to capacity
(infinite), latency (zero), and bandwidth (infinite) for all as-
pects of execution except the hardware that implements the
particular component under scrutiny. Isolating a component
in this way directly measures its effect on overall perfor-
mance. This is the same methodology that previous studies
used to isolate the effect of a single architectural feature [9].
In that work the feature was finite execution resources. We
extend the technique by studying multiple effects in isolation
and demonstrating how they can be combined. We show in
Section 5 that this approach is ultimately successful – when
all components are combined and then tested against a sim-
ulator that models the microarchitecture realistically, the
combined model accurately predicts placement quality.

In our experiments, we used a set of eight benchmarks
comprised of different types of applications: four from
SpecInt [38] (gzip, mcf, twolf, vpr), two from SpecFP
(equake, art), and two from Splash2 [17] (fft, lu). For
each benchmark we have generated eight possible instruc-

int *V;
int a, b;
int c, d, r;

r = a*c + b*d;
V[a] = 2*r + d << 2; 
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Figure 2: WaveScalar Application Layout: The fig-
ure contains two domains.

tion placements, which produce a range of operand latencies,
coherence overhead, and processing element contention.

3.1 Instruction Placements
For spatial processors, the placement phase of instruction

scheduling produces an instruction layout that maps units of
computation to locations in the computational substrate. In
WaveScalar, placement maps WaveScalar instructions onto
processing elements in the WaveScalar processor. Figure 2
illustrates an application and a sample layout.

We use eight different instruction placement algorithms in
this study:

random: Assigns each instruction randomly to a PE any-
where in the processor.

packed-random: Assigns each instruction to a randomly
chosen PE from a restricted set of contiguous domains.
The size of this set is the minimum number of domains
required to hold all of the program instructions.

static-snake: Assigns instructions to PEs in static pro-
gram order (i.e., as they appear in the binary). The al-
gorithm fills each domain completely before moving on
to the next. Similarly, the algorithm fills all domains
in a cluster before moving on to the next cluster. It
fills clusters in a “snaking” order: left to right on the
first row, right to left on the second, then left to right
on the third, and so on.

depth-first-snake: This is a depth-first, search-based al-
gorithm that computes a pre-order traversal of the in-
structions in the DFG. It then assigns each group of
64 instructions from this pre-order to a PE. The goal
of this algorithm is to place data-dependent instruc-
tions in the same PE, as these instructions cannot fire
in parallel and therefore can share a PE without con-
tending for the execution unit. depth-first-snake
fills PEs in the same order as in static-snake.

over-2-DFS, over-4-DFS, over-8-DFS: These are the
same as depth-first-snake, except that they assign
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Figure 3: WaveScalar Application Profile

two, four or eight times as many instructions (128,
256, and 512 respectively) to each PE as it can actu-
ally hold.

dynamic-snake: Assigns instructions to processing ele-
ments in dynamic program order. It fills PEs in the
same manner as static-snake.

We selected this set of placement algorithms to represent
a variety of approaches to the placement problem. ran-
dom and random-packed produce very naive layouts which
represent lower bounds on performance. static-snake em-
ulates an instruction prefetching algorithm. depth-first-
snake attempts to utilize the sequential nature of depen-
dent instructions in a productive way for placement. The
over-subscribed DFS algorithms explore contention effects
in the architecture. Finally, dynamic-snake, which uses
the dynamic instruction execution order, has a performance
advantage over the other algorithms, which use the static
instruction order. Any spatial computer could implement
the first seven algorithms, while only WaveScalar provides
the dynamic instruction placement capabilities required by
the last.

3.2 Input Application and Profile
In this work we do not attempt to parallelize or other-

wise optimize application binaries for a particular instruc-
tion placement or for spatial computing in general. For ex-
ample all loops were already unrolled by a factor of four.
We therefore profiled the binaries as they were to produce
an annotated dataflow graph of the program. Figure 3 de-
picts an example. Profiling annotates edges with the num-
ber of times a value flowed along it during profiled execution.
Profiling also adds a second type of node, an address node,
which represents a cache line address that the application
accessed. Address nodes are connected to the instructions
which access them. These edges also have weights that in-
dicate the number of profiled accesses.

4. COMPONENTS OF PERFORMANCE
This section presents the three components of the in-

struction placement model that most affected performance:
operand latency, coherence overhead, and contention for PE
resources. We describe each in isolation and present simula-
tion data that illustrates their value in predicting execution
performance from an application’s instruction layout, profile
and the processor’s microarchitectural parameters. Where
appropriate, we will briefly describe some of the alternative
components which we had hypothesized would affect perfor-
mance, but turned out not to. Section 5 combines the three
individual components into a unified instruction placement
model.

Throughout this paper we use the following common set
of variables:

• n is the number of static instructions in the applica-
tion. i refers to the i’th instruction, j refers to the j’th
instruction.

• Ci is a cluster, expressed as an x, y coordinate that
contains instruction i (Ci = (Cxi , Cyi)). Similarly,
Di, Pi, and pi are the locations of the domain, the
pod, and the processing element, respectively, where
instruction i is placed.

• Ti,j refers to the amount of communication (or traffic)
between instructions i and j. This is simply the profile
edge weight.

• a refers to a particular cache line address.

• Ca is the number of clusters that contain copies of the
cache line with address a.

• Na is the total number of accesses to address a across
all clusters throughout execution.

• IP is the number of instructions assigned to PE p.

• PeCapacity is the maximum number of instructions
that can be resident at a PE at any moment. In this
study PeCapacity = 64.

We use the Manhattan-distance for all distance calcu-
lations in our work. For example, the cluster distance,
||Ci − Cj || is |Cxi − Cxj |+ |Cyi − Cyj |.

The results present data both graphically and in tabular
form. For the graphs, we computed each component model’s
output (the X-axis) from an instruction layout, an applica-
tion profile, and the WaveScalar microarchitectural configu-
ration. We then compared this to the results of a cycle-level
simulation executing the application with the same layout
(this is the Y-axis). As previously explained, when test-
ing a component, we idealized the microarchitecture, except
for the hardware that implements it. For the unified model
evaluation, we simulated all hardware realistically.

The tabular data presents two metrics: correlation and
contribution. Correlation is the standard statistical correla-
tion, computed between the model’s output for a layout and
the measured performance of its corresponding simulation.
It indicates how closely the model of a component matches
its simulation. We use correlation, because our goal is to
estimate the relative quality of layouts instead of their ab-
solute performance. Because the models are structured as
cost functions, the correlations are negative (with increased
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Figure 7: Operand Latency: We expect operand
communication to have varying latencies depending
on how instructions are placed. This figure illus-
trates the four types of WaveScalar operand com-
munication.

cost translating into lower performance in IPC). Contribu-
tion represents the importance of a component to overall
performance; it captures the degree to which overall per-
formance varies with the component value. We calculate
contribution by taking the variance of the simulated IPC
and dividing it by the average IPC. Components with high
contribution values will influence overall performance more
than those with lower contribution values.

4.1 Operand Latency
With shrinking process sizes, on-chip communication

is expected to increasingly dominate performance [1].
Operands traveling from instruction to instruction in spatial
computers is one type of on-chip communication. The la-
tency of this communication is dependent almost exclusively
on the instruction layout. For example, two data-dependent
instructions placed on opposite sides of the WaveScalar pro-
cessor will require many cycles to communicate. If this pair
of instructions executes frequently, performance suffers even
more.

Figure 7 illustrates the four different types of communi-
cation in WaveScalar’s hierarchical communication struc-
ture: long distance, inter-cluster communication (labeled
D); intra-cluster but inter-domain communication (labeled
C); intra-domain but inter-pod communication (B); and
intra-pod communication (labeled A). Each type of commu-
nication has a different latency. Intra-pod communication
occurs over shared bypass buses and is zero cycles. Within
a domain the latency from the execution pipeline stage in
one PE to the execution stage in another is 4 cycles. Within
the same cluster, but across domains, communication trav-
els through the cluster switch and requires 7 cycles. Finally,
long distance communication, requires a time proportional
to its distance: 7 cycles for level C communication, plus 1
cycle for each inter-cluster network link traversed.

We model operand latency based on the distance between
the producer and consumer of the operand. Considering

any two instructions, i and j, the latency between them is
dependent on their locations:

Latencyi,j =

8><>:
0 if Pi = Pj ,

4 if Di = Dj ,

(||Ci − Cj ||+ 7) otherwise.

(1)

The total latency that operand traffic incurs is therefore
the summation of this value for each pair of instructions mul-
tiplied by the frequency of communication between them:

Latency =
X

i

X
j

Ti,j × Latencyi,j (2)

We can compute this estimate quickly from profile data
and an instruction layout. Figure 4 contains the results
of isolating operand latency. The table on the left is the
correlation between Latency and application performance.
The average correlation coefficient is −0.88. The figure on
the right shows raw performance versus operand latency for
a representative application; the X-axis is the latency metric
and the Y-axis is simulated performance (IPC)

The high correlations across all applications indicate that
the operand latency model captures the effect of actual
operand latency induced by an application layout: higher
latency leads to lower performance. (Art on the right side of
Figure 4 typifies this strong inverse correlation.) An average
contribution factor of 0.84 indicates that operand latency is
a significant contributor to overall application performance.
Taken together, the correlation and contribution results in-
dicate the extent to which operand latency affects overall
performance and that it is accurately reflected by our model.

This model examines only operand latency over the net-
work and ignores any limitations on bandwidth. We origi-
nally included an additional component in the model to cap-
ture network bandwidth. However, with 4 ports per cardinal
direction for each of the inter-cluster network switches, we
found that the WaveScalar design provided sufficient band-
width capability and consequently bandwidth did not con-
strain performance.

4.2 Data Cache Coherence
The second component of placement performance is co-

herence overhead. Each WaveScalar cluster has an L1 data
cache. When an instruction accesses memory, it first checks
its local L1 cache. If the line is present, the operation
can continue; if not, the directory-based coherence system
fetches it, either from another L1 cache or from the L2 cache.

From the application profile, we can identify which in-
structions access which addresses in memory. Using this in-
formation, we evaluate an instruction layout, based on how
the memory accesses might tax the distributed cache sys-
tem. Ideally, a placement algorithm would assign all of the
instructions which access a common cache line to the same
cluster, thereby allowing the instructions to share a single
cache line in the local L1 cache. However, when two in-
structions in different clusters write the same cache line,
the coherence system will transfer ownership of the cache
line with each write. This transfer of ownership occurs both
for addresses that are accessed by multiple threads (as hap-
pens on traditional shared memory systems) and within a
single thread.

The number of ownership transfers depends on the tem-
poral order of the cache accesses [16]. Because the profiles
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Benchmark Correlation Contribution
Coefficient

art -0.90 0.56
equake -0.92 0.41

fft -0.88 1.52
gzip -0.93 0.52
lu -0.86 1.45

twolf -0.89 0.65
vpr -0.84 0.85
mcf -0.80 0.78

Average -0.88 0.84
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Figure 4: Operand Latency Metric Evaluation: On the left is the correlation between simulated performance
and operand latency for our application suite. Since higher operand latency should lower IPC, a perfect
correlation would be −1.0. On the right is a graph depicting results for a single application, art. Each of
the eight data points represents one layout. The X-coordinate is the operand latency metric, while the
Y-coordinate is the simulated operand latency IPC. Other applications’ correlations are qualitatively similar.

Benchmark Correlation Contribution

art -0.92 0.49
equake -0.99 0.18

fft -0.33 0.35
gzip -0.95 0.33
lu -0.64 0.79

twolf -0.92 0.45
vpr -1.00 0.03
mcf -0.97 0.12

Average -0.84 0.34
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Figure 5: Coherence Overhead Evaluation: On the left is the correlation of the estimated shared data miss
rate to simulated IPC for each of the benchmarks and the contribution of this metric to overall performance.
Because an increased miss rate should degrade memory performance, an ideal correlation would be −1.0.
On the right is a graph that depicts simulated memory system performance versus the coherence overhead
metric for each instruction layout for twolf.

Benchmark Correlation Contribution

art -0.69 1.22
equake -0.84 0.28

fft -0.74 2.43
gzip -0.83 0.76
lu -0.65 2.58

mcf -0.83 0.65
twolf -0.79 1.02
vpr -0.67 0.73

Average -0.76 1.21
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Figure 6: PE Contention Evaluation: The table on the right shows the correlation of our PE contention
model to the simulated IPC. The graph shows the detailed data for one application: mcf
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do not capture this information, any model we build must
make an assumption about how ownership of a cache line
changes over time. We assume that all intra-thread sharing
is migratory, meaning that writes to a line from different
clusters are not interleaved over time. We build the model
of the coherence system, shown in Equations 3 and 4, based
on this assumption. The model assumes that the coherence
system migrates each cache line a between L1 caches only
once for each of the Ca clusters that accesses it.

Missesa =

(
1 if Ca == 1,

Ca if Ca > 1
(3)

Hitsa =

(
Na − 1 if Ca == 1,

Na − Ca if Ca > 1
(4)

To test this migratory model, we simulated with no
operand latency, bandwidth constraints, or execution re-
source constraints; only the effect of the data caches throt-
tles performance. We measured the correlation between the
miss ratio predicted by the coherence model and the re-
sulting application performance. The results, the table in
Figure 5, support the use of a migratory sharing scenario
to model distributed data cache behavior. The actual and
predicted performance correlate with an average coefficient
of −0.84. However, at 0.34, its contribution to performance
is lower than operand latency.

An alternate sharing model assumes inter-cluster write
contention, where an instruction in one cluster writes a cache
line, followed by an instruction in a second cluster, followed
by a third, and so on. Each write will require action from
the coherence system. While in theory a situation such as
this can occur, in practice it does not. Fewer than 1% of the
cache lines used by an application exhibit any significant
contention. Consequently, the contention-based coherence
model did not correlate as well as the migratory model.

We did not include common cache effects, such as conflict
and capacity misses, in our instruction placement model be-
cause our experiments show that the principle change in
performance between two instruction layouts is attributable
to sharing misses, rather than these other types of cache
misses.

4.3 Processing Element Contention
The final component of the instruction placement model

is contention for instruction storage at the processing ele-
ments (PEs). PEs in the WaveScalar processor can hold
a limited number of instructions. If the number of instruc-
tions assigned to a PE exceeds this limit, the processor stores
the excess instructions in memory and swaps them in when
required during execution. PEs use an LRU algorithm to
decide which instruction to evict. In all of the experiments
presented in this paper, the PEs hold 64 instructions and
each instruction swap takes 32 cycles.

We model the contention among instructions at a PE by
counting the number of excess instructions at each PE:

PeContention =P
p

(
|Ip| − PeCapacity when |Ip| > PeCapacity

0 otherwise.

(5)

This straightforward model is highly effective at capturing
contention for instruction storage. Figure 6 shows the ex-
perimental results. As with the other comnponents, perfect
correlation would be −1.0, as more contention should trans-
late to lower performance. The average correlation across
all benchmarks and all layouts is −0.76. The average con-
tribution is 1.21, indicating that contention, like operand
latency, is an important element of overall performance.

Examining the table in Figure 6, we see that the PE in-
struction contention metric correlates well with IPC when
all aspects of execution except for the PE resources are ide-
alized. The exception is when the model predicts there will
be no contention (the points on the Y-axis of the graph in
Figure 6). Other statistics gathered from the microarchitec-
tural simulator indicate that in these cases contention that
is not modeled for other PE resources, such as the operand
input queue, the instruction dispatch queue, and the ALU,
produces variations in actual contention. Furthermore, met-
rics for these other types of contention correlate very closely
with simulated IPC. For example, for mcf, the correlation
coefficient of the average instruction scheduling queue length
to IPC, is −0.93. This indicates a potentially fruitful area
for future instruction placement model refinement.

5. COMBINED
Finally, we combine each of the component models into

a unified model of instruction placement. Our goal is to
predict relative WaveScalar performance for a particular in-
struction layout when we simulate all parts of the microar-
chitecture realistically. A tension between data sharing,
which encourages that instructions be placed close together,
and contention for hardware resources, which encourages
physical dispersion to balance the load more evenly, is in-
herent in the unified model. Operand latency and coherence
costs for shared data capture the first concern, while con-
tention for instruction storage in processing elements encap-
sulates the second.

The unified model combines these three metrics, balanc-
ing the packing-dispersion trade-off by weighting each model
according to its relative contribution. The overall model is
simply a weighted sum of each of the three sub-models, as
shown in Equation 6. The coefficient for a component, such
as ContributionLatency for operand latency, is the average
contribution across all benchmarks.

PredictedPerformance =
ContributionLatency × Latency +
ContributionData × Data +
ContributionPeContention × PeContention

(6)

For each of the sixty-four data points (eight benchmarks,
eight layouts each), we calculated a combined model output
according to Equation 6. We then simulated each layout
with all microarchitectural parameters modeled realistically.
Because each benchmark has a different amount of inherent
parallelism, we normalized the IPCs for each application to
between 0 and 1. We also normalized the component model
metrics. Because some of the component models produce
metrics that are different in scale from the others (e.g., as
a weighted sum of edges, the latency metric might be very
large, while the data cache miss rate will always be between
0 and 1), these values must be normalized before they can be
combined meaningfully. Ultimately, the component model
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outputs are normalized twice, once per component model
and once per application. Finally we adjust the contribution
values so that they sum to 1. The resulting values are:
ContributionLatency = 0.35, Contributiondata = 0.14, and
ContributionPeContention = 0.51.

The graph in Figure 8 shows the correlation between pre-
dicted and measured performance of the instruction place-
ment model derived from all data. The average correlation
coefficient for all of the applications is −0.90.

An important caveat about this correlation is that we eval-
uated the model on the same data points from which we
derived it. Because we intend the model to be predictive, a
more rigorous evaluation of its quality is to measure how well
it predicts the performance of a new application. Separat-
ing data into training and test sets is common in the field of
machine learning: One develops a model from training data
and then evaluates it on the corresponding test data.

Taking this approach, we divided our benchmark data into
eight pairs of training and test data sets. For instance, one
training set consists of all benchmarks except fft and the
corresponding test set contains only fft. We then built a
model based on each set of training data and evaluated it
on its corresponding test data. The results, which appear
in Figure 8, show that the instruction placement model is
reliably capable of predicting the performance of new appli-
cations, with a −0.82 average correlation. Given this strong
correlation, instruction placement algorithms that rely upon
this model to gauge placement decisions can have confidence
in those decisions.

6. AN IMPROVED PLACEMENT ALGO-
RITHM

There are many uses for an instruction placement model.
One is to help build better instruction placement algorithms.
Among the eight instruction placement algorithms used in
this study, two were particularly good at optimizing certain
components: depth-first-snake outperformed all of the
others from an operand latency perspective, while dynamic-
snake was best with respect to contention for instruction
space in the PEs. The clear dominance of these factors, to-
gether accounting for 86% of instruction layout performance
according to the model, as well as the fact that they address
opposing instruction placement concerns, suggests that a
blend of these two algorithms will be even better.

We examine depth-first-snake first. This algorithm
uses a depth first search of the dataflow graph to find depen-
dent chains of producers and consumers. By placing instruc-
tions in a chain on the same PE, we ensure that those in-
struction operands use the low-latency local bypass network.
Our simulation results confirm this intuition, with over-8-
DFS which forms extremely long chains outperforming the
nearest placement by 20% when measuring only operand
latency performance.

However, with respect to PE contention, dynamic-snake,
performs best. dynamic-snake packs the WaveScalar pro-
cessor grid with instructions most efficiently, by filling PEs
in dynamic execution order, thereby guaranteeing that PEs
contain only instructions that are actually executed.

Following the intuition that our modeling work provided,
we have designed a new placement algorithm, dynamic-
depth-first-snake, which combines the best features of
both of depth-first-snake and dynamic-snake. Like

depth-first-snake, it fetches instructions in chains of pro-
ducers and consumers. Like dynamic-snake, it places in-
struction chains in PEs in execution order. The example in
Figure 9 explains the details of this algorithm further.

On average, dynamic-depth-first-snake improves on
depth-first-snake and dynamic-snake by 28% and 7%,
respectively, with peak application gains of 60% and 43%,
respectively. dynamic-depth-first-snake is currently the
instruction placement algorithm we are using for ongoing
WaveScalar research.

7. RELATED WORK
Performance modeling has a rich history. The place-

ment model we present here leverages this body of work
but also blends it with aspects from other domains, such as
FPGA/ASIC CAD synthesis. Here we place our placement
model in context between these related fields.
Related architectures: There are several recently de-
signed spatial architectures, in addition to WaveScalar,
which we believe could be modeled using the methodol-
ogy described in this paper: nanoFabrics [18], TRIPS [34],
RAW [23], and SmartMemories [26]. The nanoFabric [18]
work is the most closely related. Operand communica-
tion latency is critical for efficient operation in nanoFab-
rics. TRIPS [34] is more centralized than WaveScalar but
still has many distributed aspects. In particular our con-
tention model should be applicable to contention for execu-
tion resources in physical TRIPS “frames”. The RAW [23]
microprocessor could use a similar model. In this case con-
tention would be less of an issue because the static scheduler
could resolve many temporal resource conflicts at each tile.
Finally, the SmartMemories [26] processor should have simi-
lar issues of coherence sharing, latency, and contention even
though it utilizes a coarser-grained thread.
Uniprocessor models: There is a wealth of previous work
in the area of processor performance modeling in general.
For superscalars the approaches have been statistical [28],
[29], [30], trace-based [14], or both [14]. Because they focus
on uniprocessors, these models treat computation sequen-
tially – there is a single data cache hierarchy, and a single
processor core. Hence, there is no “placement effect”, as
all computation occurs in one component. Issues such as
operand latency simply do not appear in these uniprocessor
models.
Multiprocessor models: Some models of parallel ma-
chines have focused on features that are central to dis-
tributed ILP architectures, such as parallel processing el-
ements [8], [15] and distributed memory [44]. The paral-
lelism in distributed ILP systems is significantly more fine
grained than in these previous models. Each instruction
in a distributed ILP system is conceptually a thread, and
consequently the contention for resources among threads is
significantly higher. Furthermore, in WaveScalar, there is a
new form of migratory sharing that occurs within the same
thread.
Place & Route: The problem of instruction placement
for a distributed ILP architecture closely resembles FPGA
place and route [3], [13], [37] and ASIC synthesis [6]. How-
ever, there are a number of subtle differences, the most sig-
nificant of which is the scheduling of communication. With
FPGAs and ASICs, communication and execution resources
are scheduled statically, and once set, communication laten-
cies are known and guaranteed. With distributed ILP archi-
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Figure 8: Combined Performance Model Evaluation: On the left is a graph of instruction layout performance
as predicted by the complete model (X-axis) versus realistic simulated performance (Y-axis). The correlation
coefficient is -0.90. In the table, each row represents a different training set. The first column of data shows
the average correlation of predicted to actual performance for a training data. The second column shows its
correlation to the test set.

tectures, execution is far more dynamic. While inspired by
place and route solutions, the placement model presented
in this work handles dynamic effects, such as contention for
instruction storage resources.

Our work builds upon a previous effort [9] which made an
ideal dataflow execution more realistic by placing a limit on
the number of available processing elements. We take this
methodology a step further, adding other practical concerns
(namely operand communication latency and distributed
data cache coherence), and introducing a technique for com-
bining multiple component models accurately.
Compiler optimizations: Any software transformations
or optimizations that serve to increase or manage paral-
lelism, such as k-loop bounding [7], memory access optimiza-
tions, such as tiling [5], target-specific optimizations, such
as cyclic data decomposition and tiling [25], or specially de-
signed languages [27, 43, 4, 24, 21], are complementary to
this work. Such transformations serve to improve the poten-
tial performance of the application. The analytical model
we present here inputs the compiled application, and its aim
is to realize as much of the software-exposed parallelism as
possible at execution time. Any hardware improvements
one might apply [42, 35] are also complementary. As with
the software transformations, such hardware optimizations
can help performance, but are orthogonal to the analytical
model.

8. CONCLUSION
This paper has presented an instruction placement model

that drives instruction scheduling on WaveScalar’s spatial
microarchitecture. The model has three major components:
operand latency, the coherence cost of sharing data, and
contention for instruction memory in individual PEs. We
developed and validated each of these components before
combining them to produce a unified instruction placement
model. The unified model predicts performance for different
instruction layouts with a correlation of −0.90. Standard
machine learning testing of the model achieves a correlation
of −0.82.

The model provides empirical evidence that instruc-
tion layout heuristics for spatial processors, in this case
WaveScalar, should balance operand latency and migratory
cache sharing with contention for processing element in-
struction storage. Based on these results, we designed a
new scheduling algorithm for instruction placement, that
drew upon characteristics of two previous algorithms that
exploited these features individually. The new algorithm
outperformed the old ones by averages 28% and 7%.

We expect that our model and the methodology used to
develop could apply similarly to the development of schedul-
ing algorithms for other spatial computing fabrics, including
TRIPS [34], RAW [45], SmartMemories [26], and nanoFab-
rics [18]. More important than how these individual archi-
tectures implement instruction placement, is the question of
how to make intelligently guided decisions about the pro-
cess. The model presented in this paper can serve as that
guide.
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