Modeling Instruction Placement on a Spatial Architecture

Martha Mercaldi
Steven Swanson, Andrew Petersen, Andrew Putnam, Andrew Schwerin
Mark Oskin and Susan Eggers

University of Washington

Why Spatial Architectures?

Scalability?

Complexity?

Power?

Why Spatial Architectures?

Scalability

Short wires

Complexity

Simple, replicated unit

Power

Turn off unneeded tiles

What should execute where?

Instruction Placement

On a spatial architecture, where should execution occur?

Why model placement?

Enable exploration -

- of placements
- of microarchitecture

Guide for development of placement algorithms [ASPLOS 06]

Talk Outline

Motivation

WaveScalar Background

Sub-model Construction & Evaluation

Unified Model Construction & Evaluation

WaveScalar Processor

Dataflow execution model

Tiled microarchitecture

Processing Element

5-stage pipeline

Holds 64 instructions

1 execution unit

1 cycle operand latency

PEs in a Pod

2 Processing **Elements**

Execution stages linked

Domain

4 Pods

Crossbar interconnect

EXE to EXE: 4 cycles

Cluster

4 Domains

Network switch

Local L1 Data Cache

Store Buffer

EXE to EXE: 7 cycles

WaveScalar Processor

Application Execution

Talk Outline

Motivation

WaveScalar Background

Sub-model Construction & Evaluation

Methodology

Example

Unified Model Construction & Evaluation

Model Inputs & Output

Internal Model Structure

SPAA 2006

16

How might placement effect performance?

- –Operand Latency
- -Resource Contention
- -Network Bandwidth
- -Coherence overhead

How much does X effect performance?

- Generate a sampling of placements
- 2. Run idealized simulation

(To measure contribution of X, idealize everything except X)

Contribution = Variance in IPC / Average IPC

SPAA 2006

18

For a placement, what is the cost wrt. X?

Takes three inputs

- placement
- profile
- microarchitectural parameters

Produces cost for X

How good is the submodel?

Measure correlation between sub-model output to simulated IPC

(Still using idealized simulator)

Perfect correlation: -1.0

Sub-model Example: Operand Latency

Producer-consumer distance determines operand latency

In simulator, idealized:

Interconnect bandwidth

Execution resources

Data & instruction caches

Contribution

= Variance(IPC) / Average(IPC)

= 0.84

Sub-model Example: Operand Latency

Cost depends on type of communication

- Intra-pod
 - Latency = 0
- Intra-domain
 - Latency_{i,i} = 4
- Inter-domain
 - Latency_{i,j} = $7 + ||C_i C_j||$

 $T_{i,j}$ = dynamic number of operand tokens Latency = $\sum_{i,i}$ ($T_{i,i}$ * Latency_{i,i})

Sub-model Example: Operand Latency

	Correlation
art	-0.90
equake	-0.92
fft	-0.88
gzip	-0.93
lu	-0.86
mcf	-0.80
twolf	-0.89
vpr	-0.84
Average	-0.88

Sub-model Summary

	Contribution (sub-model importance)	Correlation (sub-model quality)
Operand latency	0.84	-0.88
Interconnect bandwidth	0.01	
PE contention	1.21	-0.76
Cache coherence overhead	0.34	-0.84

Talk Outline

Motivation
WaveScalar Background
Sub-model Construction & Evaluation
Unified Model Construction & Evaluation

Sub-model Unification

	Contribution (sub-model importance)	Correlation (sub-model quality)
Operand Latency	0.84 0.35	-0.88
Interconnect Bandwidth	0.010.00	
PE Contention	1.21 0.51	-0.76
Cache coherence overhead	0.34 0.14	-0.84

TotalScore =

0.35 x OperandLatencyScore +

0.51 x PeContentionScore +

0.14 x CoherenceOverheadScore

Internal Model Structure

Internal Model Structure

Unified Model: Evaluation

Unified Model: Evaluation

How does model predict performance of **new** application?

- Use cross-validation
- Split data into training and test sets
 - Example:
 - Training: all benchmarks except fft
 - Test: fft
- Derive model from training data
- Measure correlation on *test* data

Combined Model: Evaluation

Training Set	Test Set	Correlation Coeff. (on test set)
all except art	art	-0.76
all except equake	equake	-0.89
all except fft	fft	-0.74
all except gzip	gzip	-0.83
all except lu	lù	-0.77
all except mcf	mcf	-0.95
all except twolf	twolf	-0.76
all except vpr	vpr	-0.89
Average		-0.82

Conclusion

Application placement demands analytical model

Model that predicts application placement performance based on multiple factors

Predictions shows -0.82 correlation with simulated performance

SPAA 2006

32

For more information:

http://wavescalar.cs.washington.edu

Supporting Material

Sub-model Example: PE Contention

1. Proposed sub-model

Oversubscription of PE instruction cache hurts performance.

2. Measure Contribution

In simulator, idealized:

Interconnect bandwidth

Interconnect latency

Data & instruction caches

Contribution

- = Variance(IPC) / Average(IPC)
- = 1.21

3. Construct sub-model

PeCapacity = 64 $I_p = number of instructions$ mapped to PE p

Contention_p =
$$max(0,I_p - PeCapacity)$$

PeContention = \sum_{p} (Contention_p)

Sub-model Example: PE Contention

	Correlation
art	-0.69
equake	-0.84
fft	-0.74
gzip	-0.83
lu	-0.65
mcf	-0.83
twolf	-0.79
vpr	-0.67
Average	-0.76

Sub-model Example: Cache Coherence Overhead

1. Proposed sub-model

Instruction placement determines location of cache line requests for distributed L1 data cache.

2. Measure Contribution

In simulator, idealized:

Interconnect bandwidth

Interconnect latency

PE resourced

Contribution

= Variance(IPC) / Average(IPC)

= 0.34

3. Construct sub-model

C_a = number of clusters accessing line a

 N_a = total number of accesses to line a

$$misses_a = 1$$
 if $C_a == 1$

$$C_a$$
 if $C_a > 1$

hits_a =
$$N_a - 1$$
 if $C_a == 1$

$$N_a - C_a$$
 if $C_a > 1$

CoherenceOverhead =

SPAA 2006 Average miss rate for all a

Sub-model Example: Cache Coherence Overhead

	Correlation
art	-0.92
equake	-0.99
fft	-0.33
gzip	-0.95
lu	-0.64
mcf	-0.97
twolf	-0.92
vpr	-1.0
Average	-0.84

Dataflow Execution Model

- Not a new idea [Dennis 1975]
- Code is a graph
 - Vertices = instructions
 - Edges = operands
- Execution governed by "dataflow firing rule"

