Instruction Scheduling for a Tiled Dataflow Architecture

Martha Mercaldi Steven Swanson, Andrew Petersen, Andrew Putnam, Andrew Schwerin Mark Oskin and Susan Eggers

University of Washington

Tiled Architectures

Scalability Short wires Complexity Simple, replicated unit Power Turn off unneeded tiles

What should execute where?

Talk Outline

WaveScalar Instruction Placement Hierarchical Placement Summary of Preliminary Algorithm Survey DAWG Placement Algorithm Conclusions

WaveScalar Processor

Dataflow execution model

Regular, hierarchical, microarchitecture

[ISCA 2006]

WaveScalar Application Execution

WaveScalar: Processor

WaveScalar: Pod

2 Processing Elements (PEs)

1-cycle operand latency

Talk Outline

WaveScalar Instruction Placement Hierarchical Placement Summary of Preliminary Algorithm Survey DAWG Placement Algorithm Conclusions

Hierarchical Placement

Why Hierarchical?

Processor is hierarchical

- Different network designs inside and outside domains
- Consider coarse and fine
 placement effects separately

Manage complexity

• Two subproblems smaller than total problem

Talk Outline

WaveScalar Instruction Placement Hierarchical Placement Summary of Preliminary Algorithm Survey DAWG Placement Algorithm Conclusions

Preliminary Algorithm Study

Coarse Placement

– By Function

By Topology

Min Operand Latency ⇒ Best Placements

Preliminary Algorithm Study: BUG

Fine Placement

- Bottom-Up Greedy
- Unified Assign and Schedule
- By Execution Order

- Bulldog VLIW compiler
 [J.R. Ellis Thesis, '85]
- Later, Multiflow

Preliminary Algorithm Study: UAS

Fine Placement

- Bottom-Up Greedy
- Unified Assign and Schedule
- By Execution Order

- Also for clustered microarchitectures
 [J Ozer, MICRO '98]
- Determine WHERE and WHEN an instruction will execute

Preliminary Algorithm Study: By Exe. Order

Fine Placement

• Profile-based algorithm

- Bottom-Up Greedy
- Unified Assign and Schedule
- By Execution Order

Preliminary Algorithm Study: Results

Fine Placement

Bottom-Up Greedy

 Unified Assign and Schedule

By Execution Order

+ Operand Latency &
 -- Exe. Resource Conflicts ⇒
 Better Placement

Min Operand Latency ⇒ Worst Placement

Min Operand Latency & Most Exe, Resource Conflicts ⇒ Worst Placement

Talk Outline

WaveScalar Instruction Placement Hierarchical Placement Summary of Existing Algorithm Survey DAWG Placement Algorithm Conclusions

Exploring Tradeoff

Increased ALU conflicts

DAXGP Palaemenent

Depth And Width Graph Placement

- 1. create_subgraphs(max_depth,max_breadth)
- 2. place_subgraphs(dep_degree)

DAWG Placement:

1. create_subgraphs(max_depth,max_breadth)

DAWG Placement: 2. place_subgraphs(dep_degree)

DAWG Placement as a Vehicle

- 1. create_subgraphs(max_depth,max_breadth)
- 2. place_subgraphs(dep_degree)

Explore parameter space ⇒ explore latency/conflict tradeoff

 $max_depth = \{2, 4, 8, 12, 16, 32, 50, 64, 128\}$ max_breadth = $\{1, 2, 3, 4, 6, 10\}$ dep_degree = $\{.1, .5, .9\}$

ASPLOS '06, San Jose, CA

ASPLOS '06, San Jose, CA

DAWG Placement: Performance

Conclusions

Hierarchical placement well-suited to WaveScalar

Correct balance between parallelism and operand communication latency essential

DAWG Placement is tunable to match balance to architecture and application

For more information:

http://wavescalar.cs.washington.edu

WaveScalar Team

Andrew Petersen Andrew Putnam Andrew Schwerin

Steve Swanson Mark Oskin Susan Eggers

Operand Traffic Distribution

Execution Conflicts

