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Abstract

This paper presents vbench, a publicly available benchmark
for cloud video services. We are the first study, to the best
of our knowledge, to characterize the emerging video-as-a-
service workload. Unlike prior video processing benchmarks,
vbench’s videos are algorithmically selected to represent a
large commercial corpus of millions of videos. Reflecting
the complex infrastructure that processes and hosts these
videos, vbench includes carefully constructed metrics and
baselines. The combination of validated corpus, baselines,
and metrics reveal nuanced tradeoffs between speed, quality,
and compression.

We demonstrate the importance of video selection with a
microarchitectural study of cache, branch, and SIMD behav-
ior. vbench reveals trends from the commercial corpus that
are not visible in other video corpuses. Our experiments with
GPUs under vbench’s scoring scenarios reveal that context
is critical: GPUs are well suited for live-streaming, while for
video-on-demand shift costs from compute to storage and
network. Counterintuitively, they are not viable for popular
videos, for which highly compressed, high quality copies are
required. We instead find that popular videos are currently
well-served by the current trajectory of software encoders.
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1 Introduction

Video sharing represents a growing fraction of internet traf-
fic. For example, in the November 2016 Facebook earnings
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presentation, Mark Zuckerberg described Facebook’s evolu-
tion into a “video first” company [12]. The 2016 Sandvine
Global Internet Phenomena report [33] places audio and
video at 71% of evening traffic in North America and projects
that figure will grow to 80% by 2020. Video processing plays
a pivotal role in virtual and augmented reality (Oculus Rift,
HoloLens), video surveillance (Nest), cloud gaming (GeForce
Now, PlayStation Now), and other emerging applications.
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Figure 1. Many hours of video are uploaded to YouTube ev-
ery minute [21]. The uploads are growing more rapidly than
CPU performance (as measured on SPECRate2006), which
creates a growing burden on sharing infrastructure.

To keep up with growing usage, video on demand providers
such as Netflix, YouTube, and Facebook maintain large video
serving infrastructures. All these services perform a large
number of transcoding operations [40], i.e., decoding a com-
pressed video into raw frames and re-encoding it in a new
compressed format. Each uploaded video is transcoded at
least once before it is sent to viewers. This ensures videos that
are malformed are not distributed. Even more importantly,
each upload must be converted to a range of resolutions,
formats, and bitrates to suit varied viewer capabilities, i.e.,
screen resolution, codecs supported, and available network
bandwidth. In every transcoding operation, there is a trade-
off between compressed video size, fidelity to the original
video, and transcoding time. For example, reducing video size
may reduce visual quality but encourages smooth playback,
thus potentially improving the overall quality of experience.

Within a transcode operation, the decoding step, which
converts a compressed video stream into a sequence of frames


https://doi.org/10.1145/3173162.3173207
https://doi.org/10.1145/3173162.3173207
rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons 
Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Session 8B: Potpourri

to be displayed, is deterministic and relatively fast. In con-
trast, the encoding step has to make many decisions that
can not be exhaustively explored, so encoders perform a
heuristic search over this decision space. Increasing the space
searched, also known as the effort level, increases the likeli-
hood of finding a better transcode, i.e., a compressed video
with less distortion, or lower bitrate.

Transcoding is ripe for optimization. As Figure 1 depicts,
demand is outstripping CPU performance, and within Google,
the cycles spent transcoding have grown by 10x in the last
two years. Research is needed in order to advance areas like
hardware video transcoding, evaluation of new video codecs,
and related technologies. However, there is no well-defined
way to compare transcoding solutions. In the video process-
ing community, encoders are evaluated in terms of visual
quality and bitrate. Large scale studies [7] show increases in
compression rate without hurting video quality. Computa-
tion time, however, is not typically measured and thus also
increases: as new codecs introduce new knobs and parame-
ters, the search space grows. Our case study in Section 6.2
demonstrates this effect. In the architecture community, two
widely used benchmark suites, SPEC [19] and PARSEC [2],
include some video encoding use cases. However, the video
content and settings are not representative of a video sharing
infrastructure.

To establish some common ground, this paper presents
a video transcoding benchmark, vbench, that reflects the

transcode demands of a video sharing service such as YouTube.

YouTube receives videos in thousands of combinations of
resolution, framerate, and complexity (entropy). vbench uses
clustering techniques to select 15 videos of 5 seconds each.
This is a small enough number to allow detailed RTL or
microarchitecture simulations, but wide enough to cover a
significant cross section of the corpus of millions of videos.
vbench also establishes a set of reference transcode opera-
tions against which other transcoder proposals can be com-
pared. These operations are comparable with operations that
are performed at providers like YouTube. This ensures a con-
sistent and appropriate baseline. Finally, vbench includes five
comparison metrics that derive from real-world transcoding
scenarios. These metrics guide meaningful improvements
by enforcing constraints associated with video transcoding
at scale.

We demonstrate the value of vbench with four use cases.
First, we show how the choice of input videos can change
the apparent microarchitectural trends and qualitative con-
clusions from performance studies. Second, we quantify the
limits of SIMD vectorization for transcoding: consistent with
other studies [17], we find that SIMD instructions can pro-
vide limited improvements. Next, we evaluate current GPU
support for video transcoding, finding non-intuitive trade-
offs in their behavior. While GPUs are a clear win for live
transcoding tasks, they sacrifice compression and quality
for video archival. Lastly, we find that while GPUs today
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cannot meet the strict quality and compression targets for
popular videos, newer and more complex software encoders
can. Collectively, these studies demonstrate the relevance of
our benchmark and the importance of having a curated set
of videos, meaningful baselines, and encoding scenarios to
evaluate new transcoding solutions.

2 Background

This section provides some background on video transcoding
techniques, how they are evaluated, and the video sharing
infrastructures where they play a crucial role.

To understand the importance of transcoding, consider
that a raw Full-HD frame (1920 * 1080 pixels) is roughly 3MB.
Streaming uncompressed video at 30 frames/second would
require 90 MB/s, or 700 Mb/s, exceeding the capabilities of
most home broadband installations.

Since streaming raw video is not practical, it must always
be compressed. A video transcoder is a device or program
that decodes a compressed input video into a raw, uncom-
pressed format and then re-encodes it in a new compressed
format. It is equivalent to a decoder and encoder chained
together. While video decoding simply follows the inter-
pretation rules for the bitstream of the video format, video
encoding has a number of degrees of freedom to decide how
the raw video should be compressed. Video encoding for-
mats, like H.264/AVC [38], H.265/HEVC [34], or VP9 [28],
are usually referred to as codecs.

2.1 Video Transcoding

Video encoders exploit properties of human perception as
well as spatial and temporal redundancy in the video content.
Humans perceive changes in luminosity more than changes
in color, therefore video processing is performed on the YUV
color space, rather than in RGB. YUV separates luminosity
signal (luma) from color information (chroma) allowing en-
coders to dedicate more bits for the luma plane than the
chroma plane (a process called chroma subsampling). They
also rely on the fact that blocks of pixels in a frame are
usually similar to other blocks of pixels in previous (and
future) frames. Encoders take advantage of this similarity by
expressing part of a frame as a function of blocks in other
reference frames.

Video encoders generally adhere to the following tem-
plate: First, video frames are decomposed in square blocks
of pixels called macroblocks. For each macroblock, the en-
coder searches temporally neighboring frames for similar
macroblocks (motion estimation). This initial motion estima-
tion is usually the most computationally onerous step [17].
Once a suitable reference block is found, the encoder com-
putes the difference (the residual block) and stores only the
relative location (the motion vector). Residual blocks are then
encoded like a regular image [31]: A discrete cosine transform
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(DCT) is used to convert blocks of pixels to the 2D spatial fre-
quency domain. Then the matrix of coefficients is quantized,
i.e. divided point-wise by another matrix (the quantization
matrix) to introduce zeroes!. Quantization zeroes out the
high frequency components (quick pixel transitions) which
are less noticeable to the viewer. Quantization is the only
lossy part of the process. The more zeroes introduced this
way, the more effective the final compression step, in which
each frame is losslessly compressed via entropy encoding, e.g.
Context Adaptive Binary Arithmetic Coding (CABAC) or
Context Adaptive Variable Length Coding (CAVLC) [26].

New codecs introduce new compression tools and algo-
rithms, like the H.264 deblocking filter, which removes arti-
facts that can appear at the boundaries between macroblocks.
Denoising is another optional operation that can be applied
to increase video compressability by reducing high frequency
components [23].

2.2 Encoding Effort

Video encoding requires the user to specify a target quality.
If the user specifies a constant rate factor (CRF), the encoder
will try to sustain the same quality level for all video frames,
using as many bits as necessary. Alternatively, to make the
video size predictable, the user can specify a target bitrate
(bits per second); The encoder will try to fit the video in the
allocated space, but may sacrifice quality to do so.

When encoding to a target bitrate, 2-pass encoding can
optimize the allocation of bits to the more complex parts of
the video. On the first pass, the encoder records how complex
each frame is and uses that information in the second pass to
budget fewer bits for simple frames, and more for complex
frames.

The Rate Distortion Optimizer (RDO) decides how to
gracefully degrade visual quality in order to meet the tar-
get bitrate. A sample RDO decision would be the post-DCT
quantization strength. More complex decisions include how
to decompose the frames into macroblocks or whether to
perform sub-pixel motion estimation.

The difficulty of the RDO’s job is input dependent. Videos
with static images, such as slideshows or animations, are
easily compressed since motion vectors describe most of the
frames with precision. On the other hand, videos with high
motion and frequent scene changes will require more time
for motion search, and other optimizations to fit the frames
in the allowed bitrate.

It is possible to specify an encoder effort level that affects
the RDO decisions. RDO decisions at each stage of encod-
ing entail difficult-to-predict tradeoffs between quality and
bitrate. As a consequence, the whole encoding process re-
sembles a heuristic search. Performing more computation, i.e.
covering more combinations in the encoding space, ensures

IPotentially the entire residual block can be discarded if equal to zero after
quantization.
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that better transcodes are found. The effort level restricts
the parameters (motion search range, number of reference
frames, etc.) used in the search for a better encoding. Higher
effort will achieve higher quality at the same bitrate, at the
expense of longer encoding time.

2.3 Transcoding Metrics

Video transcoding must be evaluated in three dimensions:
visual quality, video size, and transcoding speed.

Visual quality is measured by comparing the original un-
compressed frames with the same frames in the encoded
version. Peak signal-to-noise ratio (PSNR) captures the ratio
between the maximum error per pixel and the actual error
per pixel, so larger values indicate higher quality. Given an
initial raw frame F and its transcoded version T, both of mxn
pixels, PSNR is obtained by computing the mean square error
(MSE):
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The MSE is then compared against the maximum pixel value
of the frame, typically 255 for standard 8 bit pixels.

255
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This process can be repeated for all planes, luma (Y) and
chroma (Cb,Cr) of all frames and averaged to compute the
average YCbCr PSNR. We use average YCbCr PSNR in the
remainder of the paper as a measure for transcoding quality.

There are alternative “perceptual quality” metrics such
as Structural Similarity (SSIM [37]), and those recently pro-
posed by Netflix [24] and Google [6]. These metrics try to
capture the specifics of human visual perception into an
analytic method. They all assume that the original video is
uncompressed. However, YouTube uploads generally arrive
already encoded and thus potentially distorted. Furthermore,
there is no consensus in the video processing community as
to which one of these metrics works best. Therefore, we rely
on the “objective” PSNR for the rest of this work.

Video size is usually measured by bitrate, the number of bits
per second of video. While actual video file size depends on
the length of the video, bitrate is a video-length-normalized
metric. Decreasing the bitrate of a video stream decreases
the likelihood of re-buffering events, i.e. video data packets
not delivered on time for playback. To compare videos at
different resolutions, we report bitrate normalized by the
number of pixels in each frame (bits per pixel per second).

Transcoding speed, like bitrate, is normalized against the
length of the video, and the resolution of each frame. We
multiply the number of frames transcoded in a second by
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the number of pixels in a frame and report the number of
pixels transcoded per second.

2.4 Evaluating a Transcoder

Since video quality is clearly related to the bitrate made avail-
able to the video encoder, the video community compares
video transcoders using PSNR curves that plot video qual-
ity as a function of the video bitrate. Figure 2 (top) shows
PSNR curves for three different software encoders on one
HD video?.
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Figure 2. Video transcoding is usually compared on video
quality vs. video bitrate, but that leaves out a critical third
dimension: the transcoding speed.

The curves show that libvpx-vp9 achieves slightly better
quality than libx265, and both achieve substantial improve-
ments over libx264 for all target bitrates. That would indicate
that libvpx-vp9 is a superior transcoder, since it can always
provide better quality at the same video size, or smaller
videos at the same quality.

However, when transcoding speed is factored in Figure 2
(bottom), we observe that the advantage of libvpx-vp9 over
libx265 corresponds to a decrease in transcoding speed, and
that both of them require 3-4x more computation than libx264.
It is no longer obvious which one is the best encoder.

The answer depends on the use case. Sometimes a fast
transcode is needed, e.g. when streaming a live event, so it
is necessary to trade bitrate and/or quality to ensure that
streaming is fluid. Conversely, when a video is expected to
be played many times, it is worth using an advanced en-
coder, since the cost of producing a smaller video at equiva-
lent perceptual quality is amortized, and the bitrate savings
are multiplied, across the many playbacks. A video shar-
ing infrastructure is designed to efficiently manage all these
decisions.

2The first 1000 frames of Big Buck Bunny [3], used in SPEC 2017.
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2.5 Video Sharing Service Architecture

A video streaming service such as Netflix, YouTube, or Face-
book allows users to view, rate, upload, and comment on
videos. They serve media to a wide variety of devices, from
web browsers to mobile applications, with media content
ranging from movies, television programs, music videos,
video games, and documentaries, to animations, slideshows,
and screen capture tutorials.

These services incur three primary costs: storage, network,
and compute. The storage cost is proportional to the size of
the corpus of videos stored in a central repository, including
duplicates in various resolutions and formats, as well as
replication across a Content Distribution Network (CDN)
for faster service [4, 32]. The network cost is determined by
the egress traffic from the central repository and/or CDN
to users and, to a lesser extent, by the ingress traffic of new
uploads. The compute cost is incurred each time a video is
transcoded.

To optimize these costs, video streaming services make
multiple video transcoding passes on each video, as illus-
trated in Figure 3. Videos are uploaded in a wide variety

1080p
Universal Live or VOD

Universal
format

=
1080p
Popular

Figure 3. Video transcoding passes in a video sharing infras-
tructure. Higher effort is invested in popular videos watched
many times.

of combinations of codec, container, color space, resolution,
frame rate, etc. [11]. To apply a uniform process, all originals
are first transcoded to an universal format that functions as
an intermediate representation for the system.

From there, videos are transcoded to a wide variety of
formats and resolutions to suit the capabilities of the network
and the different client platforms. Depending on whether the
video is being forwarded directly to clients, i.e. live streaming,
or transcoded offline and stored to be viewed later, i.e. video
on demand or VOD, this encoding can be single pass for
low latency, or two pass for higher quality and smaller size.
Newly uploaded videos must be available for playback as
soon as possible, especially for live streaming, so the latency
of these transcoding steps must be bounded.

Video popularity follows a power law distribution with
exponential cutoff [5]: most of the watch time concentrates
in a few popular videos, while there is a long tail of rarely
watched videos. It would be wasteful to invest much com-
pute effort on the long tail, but when a video is observed
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to be popular, services will spend the extra compute. Those
videos are transcoded a second time at higher effort levels to
produce high quality compressed replicas that optimize user
experience, storage and network costs. The extra compute
time is amortized across many playbacks of the video, while
the savings are multiplied across playbacks.

3 Prior Work

Innovation in transcoding is both relevant and pressing. Fig-
ure 1 shows how the growth of transcoding demand greatly
outpaces computational improvements in today’s CPUs.

Benchmark suites have been developed for many classes
of datacenter workloads, such as personal assistants [18],
web applications [44], big data analytics [36] as well as dat-
acenter workloads at large [13]. However, there is no suite
specifically targeting video transcoding.

When transcoding does appear in popular CPU bench-
marks, neither videos, nor the transcoding operations are
representative of a video sharing infrastructure. For example,
SPEC 2006 [19] includes the H.264 reference encoder with
two low-resolution videos. SPEC 2017 uses the 1ibx264 en-
coder and two segments of a HD video. PARSEC [2] includes
a pthread parallelized version of the libx264 encoder and
one input video. With such a limited set of videos and use
cases, the complexity of video transcoding at scale can’t be
captured.

Netflix released a dataset of 9 videos from an internal suite
of 34 video clips from popular TV and movies from their
catalog [24]. This curated data set has been used in a study
proposing a perceptual quality metric, as opposed to signal
fidelity metrics like PSNR. The Alliance for Open Media
is using Derf’s HD video collection from Xiph.org [41] for
the development of the AV1 codec [15]. The Derf collection
contains 41 videos from 480p to 4K resolution. In both cases
the rationale for inclusion is either absent (Xiph) or follows
qualitative criteria such as diversity of subjects, lighting
conditions, etc. (Netflix). An additional drawback is that these
are only datasets, with no associated transcoding operations,
or scoring metrics.

HD-VideoBench [1] is a notable previous attempt at bench-
marking video transcoding that however lacks the diversity
in both input sequences (only 4 videos obtained from the
MPEG-Test Sequences archive) and scenarios (single pass
constant quality encode only) that characterize a video shar-
ing infrastructure. All their video sequences are included in
the Xiph.org collection.

Prior architectural work in video transcoding does not use
rigorously selected videos [17, 25, 30], or compares against
unoptimized encoders [17, 19] that underperform compared
to state of the art software solutions. As a consequence, it
is difficult to translate their insights for video sharing in-
frastructures, since the implications on the quality of user
experience, storage, and network costs can not be predicted
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from the reported results. As an example, Fouladi et al. re-
cently implemented a system [14] to perform low latency
transcodes using AWS Lambda. Their evaluation was per-
formed using two movies from the Blender Foundation [3]
(Sintel and Tears of Steel) and no rationale for this choice
is stated. Zhang et al. investigate how to reduce video de-
coding energy consumption in mobile devices [43]. A mix of
videogames and movie trailers video sequences are used for
the evaluation. Again, vbench would be more representative
of the content that mobile devices receive from video sharing
infrastructures.

There has been recent work documenting how large video
sharing infrastructures operate [20] or optimize for popular
videos [35]. Results obtained using vbench should also apply
to these systems.

Magaki et al. explore the possibility of introducing ASICs
into the datacenter to process large scale workloads with a
lower Total Cost of Ownership (TCO) [25]. Their analysis
names video transcoding as a possible candidate. However,
before building an ASIC, a performance analysis of the work-
load to accelerate is paramount.

Overall, the state of the art is not conducive to controlled
comparisons between transcoding solutions. This lack of
data and common benchmarks hampers innovation in this
critical area.

4 Transcoding Benchmark

In this section, we describe vbench, our video transcoding
benchmark consisting of input videos (Section 4.1), scoring
functions (Section 4.2), and reporting rules (Section 4.3). All
of the videos, reference data, and scripts are publicly avail-
able on the vbench website http://vbench.net.

4.1 Video Selection

The input videos must achieve a complex trade-off between
representativeness and coverage. They must be represen-
tative so that the results match what is observed on a pro-
duction system, but provide coverage to expose trends and
not ignore corner cases that may become increasingly im-
portant in the future. Moreover, the number of videos must
be constrained to facilitate adoption: while real machines
can easily transcode many videos, that is not feasible for
microarchitectural or RTL simulation.

Video feature selection.

From the many features describing a video, we determined
three to have the greatest impact on transcoding:

e resolution, because higher resolution frames will re-
quire a higher bitrate to encode, and will also require
more time to encode,

o framerate, because high framerate videos (> 30 frames/s)
will require a higher bitrate to encode, and
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Figure 4. Black dots are a uniform sample of videos in the various resolutions and complexities uploaded to YouTube. Colored
dots show how public video sets cover only a fraction of the space.

e entropy, because videos with high motion, or frequent
scene transitions will require a higher bitrate to encode
and higher effort (for motion search and other tools),
or will incur quality losses.

While resolution and framerate are simple to understand
and measure, entropy requires some explanation. Through-
out the paper, we use bits/pixel/second when encoded us-
ing 1ibx264 at visually lossless quality (Constant Rate Factor
CRF 18) as a measure for video entropy>. As described in
Section 2.2, when an encoder is asked to generate a fixed
target quality, it will use as many bits as needed to do so, and
thus the number of bits used by the encoder in this setting
reflects the inherent entropy of the video content.

From these three characteristics, we define a video cate-

gory as the set of videos that have the same resolution, mea-

sured in Kpixels/frame (W, rounded to integer),

framerate (frames per second, rounded to integer), and en-
tropy (bits per pixel per second when encoded using libx264
at constant quality — constant rate factor 18 — rounded to
one decimal place).

Selecting video categories.

From logs of all the video transcoding operations at YouTube
from January to June 2017, we accumulate the total transcod-
ing time spent on each video category. This yields over 3500
video categories with significant weights (40+ resolutions
and 200+ entropy values).

We use k-means clustering to select a small set of cate-
gories — particular triplets (resolution, framerate, entropy)
- from that 3-dimensional space. Prior to clustering, we lin-
earize resolution using the base two logarithm. This ensures
that the large distance between standard resolutions does not
bias the clustering algorithm. We also use the base two loga-
rithm of the entropy to quantify the relative difference be-
tween videos: videos of entropy 1 and 2 bit/pixel/s are much
more different than videos of entropy 20 and 21 bit/pixel/s.
Lastly, we normalize all dimensions to a [-1, +1] range. We

3libx264 Constant Rate Factor (CRF) goes from 0 to 51. CRF 0 is lossless
compression, CRF 23 is the default value, and CRF 18 is generally considered
visually lossless [29].
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then apply weighted k-means clustering to find a pre-defined
number of centroids, with weights determined by the time
spent transcoding for each category of videos. Since each
centroid covers multiple categories, we select the category
with the highest weight in the cluster - i.e., the mode — as
the cluster representative.

This process achieves both representativeness, since we
select the mode as cluster representative, and coverage, since
all videos must be associated with a cluster.

Selecting actual videos.

The k-means clustering defines a reduced set of ideal video
categories. We then select a random video from the YouTube
corpus belonging to each selected category. To ensure our
benchmark is redistributable, we restrict the selection pool
to videos that were uploaded with a Creative Commons
Attribution 3.0 (CC BY) license [10].

Finally, we split the full-length original videos into non-
overlapping 5-second chunks, and select the chunk with the
bitrate that best matches the average bitrate of the video. We
limit videos to 5 seconds since it has been observed to be the
optimal duration for subjective video quality assessment [27].
We verify that removing the creative commons restriction
creates no significant difference in our results or insights.
The videos that compose vbench are summarized in Table 2.

Coverage.

Our process ensures that the chosen videos are representa-
tive, with each sequence covering a significant fraction of the
entire corpus. However, not all categories can be covered. We
therefore compare our benchmark with an internal YouTube
coverage set that collects 11 uniformly distributed entropy
samples from the combination of the top six resolutions and
the top eight framerates. These 36 resolution and framerate
combinations account for more than 95% of the Youtube up-
loads. Figure 4 shows one black dot for each video in this set,
and overlays the different public video sets — plus our own,
vbench - on top to evaluate coverage.

Note that the entropy range is four order of magnitude
wide, from still images and slideshows (entropy < 1) to high
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motion videos with frequent scene transitions (entropy > 10).
In contrast, the Netflix and Xiph datasets focus only on high
entropy videos (entropy > 1) as they are intended for visual
analysis. Furthermore, the Netflix dataset contains a single
resolution (1080p). As we show in Section 5.1, the lack of
low entropy videos introduces significant bias in the results
using this video set. SPEC’06 and the latest SPEC’17 contain
only two video sequences. This is clearly not enough for
a video benchmark. Moreover, the resolution of SPEC’06
videos is not representative (too small). This is improved
in SPEC’17, however the two videos used in this case have
almost identical entropy (Figure 4) as they are obtained from
the same animation.

vbench achieves better coverage in both resolution and
entropy than all of these other alternatives, and has fewer
and shorter videos than Xiph.org, facilitating adoption.

4.2 Transcoding Scenarios

To capture the nuances of the various video processing
pipelines outlined in Section 2.5, vbench distinguishes five
scoring scenarios. Each scenario reflects the constraints and
priorities of its corresponding real-world scenario: (1) upload-
ing a new video, (2) live streaming, (3) archiving for video on
demand, (4) optimizing popular videos, and (5) optimizing
the hardware platform.

For each scenario we provide reference measurements,
namely speed (in Mpixel/sec), bitrate (in bits/pixel/sec), and
quality (in dB), all normalized to video resolution and dura-
tion to allow comparison across videos. The measurements
for each of these scenarios are taken using ffmpeg with
libx264 on a Intel Core i7-6700K CPU @ 4.00GHz with 4
cores and 8 threads. Each of these reference transcoding op-
erations is a measuring stick, grounded in real-world video
sharing infrastructure, with which to compare transcoding
solutions. All ffmpeg parameters used are reported in the
vbench website (http://vbench.net).

The Upload reference is single pass with a constant quality
target, allowing the encoder to use as many bits as needed
to maintain the quality of the original. The Live reference
is single pass, low latency, with a fixed bitrate target; the
encoder effort is lower for higher resolution videos to ensure
that the latency constraints are met. The VOD reference is
the average case and is the same as the Platform reference:
two-pass encoding with a fixed bitrate target. Finally, the
Popular reference is high-effort two-pass encoding. The
reference measurements are scientifically essential. They
ensure that vbench results reported by different groups are
directly comparable, and that the baseline is meaningful.

Users of the benchmark will try to improve on the refer-
ence transcoding operations provided. vbench uses ratios
(speedups) between a new system and a reference transcode
to indicate improvement. Values greater than 1 indicate the
new solution is better in that dimension.
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Since video transcoding entails a trade-off between speed,
size, and quality, it is unlikely that a new solution will Pareto
dominate the reference transcodes on all three dimensions. In
each vbench scoring function, one dimension is eliminated
via a strict Quality of Service constraint, which is reflective
of the particular transcoding scenario targeted, leaving ratios
for the remaining two dimensions. These can be analyzed
directly or it is possible to condense each video down to a
score by multiplying the two ratios, similar to an energy-
delay product [16]. These scores, summarized in Table 1,
are easy to compare yet reflective of nuanced real-world
constraints and trade-offs.

Scenario Constraint Score
Upload whenB > 0.2 SXQ
Live when Speqy > outputMpixel/s B X Q
VoD when Q > 1 or Quew > 50dB S X B
Popular whenB,Q >15>0.1 BXQ
Platform when B,Q =1 S

Table 1. vbench scoring functions and constraints.

The Upload transcoding pass requires speed and quality:
the video should be available for further processing as soon
as possible, while not degrading the quality of the uploaded
original. On the other hand, bitrate can be almost arbitrarily
large because it is only a temporary file. We therefore require
the bitrate be no larger than 5x the reference (B > 0.2) when
reporting Upload scores of S X Q.

Live streaming must happen in real time, so transcode
must not lag behind the pixels per second of the output video.
The Live score is then B X Q.

In the VOD scenario, one cannot degrade quality compared
to the reference, as this would have negative effects on user
experience. However, provided quality is maintained (Q > 1)
or the transcode is visually lossless (Qpew = 50dB) one can
report a VOD score of S X B.

High-effort optimizations for Popular videos should al-
ways produce smaller videos of higher quality. Improvements
on visual quality and reduction in network bandwidth will
improve user experience, while extra compute cost of re-
transcoding popular content will be amortized across many
playbacks of these popular videos. In this case, we report
bitrate and quality: B X Q (if B > 1 and Q > 1). While speed
is not critical in this scenario, it should still be bounded to a
10x slowdown (S > 0.1).

The final vbench score captures the case where the en-
coding algorithm and settings are constant and only the
Platform changes. Innovations evaluated in this scenario
are the same as SPEC benchmarks: compilers (icc vs gcc),
architecture (x86 vs PPC), and microarchitecture (cache size,
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branch prediction, etc.). The scoring function assumes that
bitrate and quality will be unaffected, and thus the two plat-
forms can be compared by reporting S (if B=1and Q = 1).

4.3 Reporting Results

For each scenario, a complete run of the benchmark requires
a transcode operation for each input video sequence that is
compared against the reference. Each transcode operation
results in three values — speed, bitrate, and quality - reported
individually. For each video, if the constraints specific to the
scenario are satisfied, scoring metrics described in the pre-
vious section can be computed. Given the diversity of the
videos, results should not be aggregated into averages as sig-
nificant information would be lost. Each video reflects some
segment of the video sharing workload, so that providers,
who know the specifics of their corpus and service costs can
weigh the information accordingly, similar to what is done
today for SPEC.

We demonstrate how benchmark results should be re-
ported in the next section.

5 Bridging the Performance Gap for VOD

In this section we analyze the performance of different video
transcoding solutions on the VOD scenario, looking for op-
portunities to improve performance, and understanding the
tradeoffs that they represent. Throughout the section, we will
use the coverage corpus described in Section 3 as a golden
reference, comparing the trends, correlations, and insights
obtained with it to those of vbench.

5.1 CPU Performance

First, we examine how video transcoding exercises the CPU
microarchitecture. We found that the microarchitectural pro-
file of video transcoding is very sensitive to the input video,
which reinforces the need of a validated benchmark. Further-
more, its performance on general purpose CPUs is better
than the typical datacenter workload, e.g. websearch, with
respect to retiring rate, frontend stalls and bad speculation
stalls [22].

Figure 5 shows how L1 instruction cache misses, branch
mispredictions, and last level cache misses correlate with
video entropy*. Each plot shows two sets of data: black dots
for the coverage corpus and colored dots for the various
benchmark suites.

Our results show that transcoding of complex videos in-
curs more icache misses, and more branch mispredictions
per kilo instructions. As videos become more complex, the
encoder needs to use more advanced compression tools in

4Measurements for Figures 5 to 7 are reported on a Google corporate ma-
chine different from the vbench reference: a Xeon E5-1650v3 with 32 GB of
DDRA4. This was necessary to not distribute user data that was not Creative
Commons.

804

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

order to meet the bitrate constraint without degrading qual-
ity. This requires exercising more code, which leads to worse
front-end performance. At the same time, complex videos
incur a lower LLC miss rate. The memory footprint of a
video depends only on its resolution, not on video entropy.
Transcoding more complex videos will execute more instruc-
tions on the same data, leading to higher temporal reuse,
hence the lower cache miss rate. In all cases, the trend ob-
served using the vbench video suite matches the trend ex-
posed by the much larger coverage corpus.

Figure 5 also reveals how the choice of the video set can
lead to different microarchitecture trends. Since these trends
are most visible if low entropy videos are present, the high
entropy of the videos in Netflix and Xiph.org biases results.
The Xiph.org set shows the opposite trend on icache misses,
while the Netflix set shows no correlation between icache
MPKI and video entropy. A similar error appears on LLC
misses, where the Xiph.org set shows no correlation between
them and video entropy.

Figure 6 translates these microarchitecture event counters
to performance using the Top-Down methodology [42]. For
all video sets, we show boxplots (minimum, maximum, first
and third quartiles, and median values) for the % of time
spent on front-end (FE), bad speculation (BAD), waiting for
memory (BE/Mem), waiting for the back-end (BE/Core), or
retiring instructions (RET).

Our results show that for all sets 15% of the time is spent
on front-end stalls, 10% on bad speculation, 15% of the time
is spent waiting for memory (decreasing for higher entropy
videos, lower LLC misses), with the remaining 60% spent
retiring instructions or waiting for functional units. Except
for maximum and minimum values, the results observed
with vbench closely match those obtained with the coverage
corpus.

5.2 SIMD Analysis

The high fraction of time retiring instructions or waiting for
back-end resources indicates an opportunity for performance
improvement by increasing the number of functional units
and their data width. Exploiting data-level parallelism with
wider SIMD functional units does both at the same time.

Media processing was a major reason for the introduction
of SIMD in consumer processors in the 1990s. Indeed, video
transcoding is amenable to SIMD acceleration because most
of its kernels (DCT, quantization, motion estimation, etc.)
are performed on blocks of adjacent pixels. However, not all
the video transcoding process can be vectorized. Figure 7
shows the fraction of scalar instructions, and of AVX2 vector
instructions as a function of video entropy.

Scalar code represents close to 60% of the instructions
on all videos, regardless of their entropy. Focusing only on
videos with entropy greater than 1, we observe a slight in-
crease in the scalar fraction as entropy increases and a corre-
sponding reduction of AVX2 instructions. Non-vectorizable
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Figure 5. These plots overlay the videos from the different benchmarks (colored dots) on the coverage set (black dots). In both
the coverage set and vbench, videos with higher entropy have worse front-end behavior, and reduced last level cache miss
rates. The lack of low-entropy videos in the Xiph.org and Netflix datasets leads to different microarchitecture performance
trends: lower branch misprediction for high entropy videos, no correlation between video entropy and LLC misses. Logarithmic

interpolation (y = a * log(x) + b ) is used to obtain trends.
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Figure 6. Statistical distribution of the fraction of time spent
on front-end, bad speculation, memory, back-end, and retir-
ing instructions. 60% of the time is either retiring instructions
or waiting for the back-end functional units.

functions include all the decision making logic, e.g. the frame
reference search for motion estimation which averages 9% of
the time, or functions that are strictly sequential and control
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dominated, e.g. entropy encoding which averages 10% of the
time.

Figure 8 shows the fraction of the execution time in the
different instruction sets as we progressively enable newer
SIMD extensions in libx264. Our results show that the scalar
fraction has been stable since the introduction of SSE2. New
ISA extensions have accelerated the already vectorized frac-
tion of time, but have not increased code coverage. Moreover
the performance improvement from SSE2 — an ISA intro-
duced more than fifteen years ago - is only 15%.

Furthermore, our results show that AVX2, which doubles
vector width to 256 bits with respect to AVX, only partially
replaces it and represents only 15% of the runtime. The re-
maining vectorized code does not benefit from 256-bit wide
SIMD registers due to the width of macroblocks being smaller
than the AVX2 vector length. Amdahl’s Law limits the po-
tential impact of a 2x wider SIMD extension to less than
10%, even if we assume that time spent in AVX2 instructions
scales perfectly with vector size.

We conclude that performance of video transcoding on
CPUs is limited by the scalar fraction of the code not suitable
for data-level parallelism. To achieve significant speedups,
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Figure 7. Fraction of time spent in scalar (non-vector) and AVX2 (long vectors) instructions as a function of video entropy.
Over half the executed code is not suitable for SIMD acceleration, and less than 20% of the code would benefit from longer
vectors. The high entropy videos in Netflix and Xiph show slightly higher ratios of scalar code.
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Figure 8. Time breakdown for H.264 transcoding across
different SIMD instruction sets. The fraction of time spent
in scalar code remains constant and becomes increasingly

dominant.

processors could be enhanced with special functional units
targeting increased code coverage [17, 30], and 2-dimensional
SIMD extensions that exploit data-level parallelism across
the entire macroblock [8]. Otherwise, we must resort to full
implementations of video transcoding in hardware.

Notice that suites other than vbench, since they contain
only high entropy videos, have a slightly larger fraction
of time spent in scalar code, and a lower fraction in AVX2
code than what we observe in the coverage corpus. In both
Xiph and Netflix sets, only 11% of the time is spent in AVX2
code compared to 14% and 15% for vbench and the coverage
set, respectively. This predicts an even lower benefit from
vectorization.

5.3 Hardware Accelerators

Contrary to SIMD extensions, end-to-end video transcode so-
lutions are not limited by Amdahl’s Law because they cover
the entire algorithm, including the control flow and bitstream
manipulation. In addition, they can exploit functional level
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partitioning and parallelism across different stages of the
algorithm.

Our results show that hardware encoders provide signifi-
cant improvements in terms of speed at the cost of increased
bitrate. Hardware transcoders need to be selective about
which compression tools to implement, in order to limit area
and power. For example, enabling sub-pixel precision in mo-
tion search or increasing the motion search range will greatly
increase the area of an implementation while providing only
marginal compression improvements.

VOD Scenario
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QsvV X
20 >‘x
X
154  o%a
%) XX °
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[
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1.1
°
[ ]
2
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Figure 9. NVIDIA NVENC and Intel QSV results on the
VOD and Live scenarios’. The shaded areas indicate gains.
While GPU adoption for VOD entails tradeoffs (speedups off-
set by losses in compression) it is an unqualified win for
Live transcoding.
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Resolution Name  Entropy NVENC Qsv NVENC Qsv LIBVPX-VP9 LIBX265
(Kpixel) (bit/pix/sec) S B VOD S B VOD Q B Live Q B Live Q B Pop Q B Pop
Score Score Score Score Score Score
854x480 cat 6.8 574 0.76 436  9.27 0.80 7.38 101 1.09 109 1.02 114 116 100 1.47 148 1.02 117 119
(410 Kpixel) holi 7.0 5.04 0.76 3.83  7.95 0.80 638 100 1.21 121 1.01 1.28 129 100 1.06 106 101 1.12 113
1280720 desktop 0.2 241 040 096  3.90 0.18 0.72 1.06 1.03 109 1.88 0.16 030 1.01 0.67 1.00 0.87
(922 Kpixel) bike 0.9 405 062 252  6.68 0.73 491 103 131 135 1.25 0.48 059 1.00 1.06 106 1.01 111 112
cricket 3.4 891 0.83 7.39 13.22 0.70 932 100 129 129 101 114 116 1.01 0.97 1.02 0.86
game2 4.9 7.72 0.64 497 1294 0.71 9.20 100 120 1.20 1.02 130 132 100 133 133 101 1.03 104
girl 5.9 851 093 7.88 14.29 0.80 11.46 101 116 117 1.01 145 147 101 1.06 1.06 1.02 0.81
game3 6.1 9.22 0.52 481 1132 0.80 9.05 101 0.96 097 1.01 1.28 129 101 109 110 1.01 0.80
1920x1080 presentation 0.2 358 035 124 435 048 2.09 1.05 0.79 0.83 134 0.31 042 1.00 1.86 186 1.00 1.13 113
(2074 Kpixel) funny 25 9.63 043 410 1117 0.83 930 101 101 1.02 1.00 1.69 1.69 1.00 137 137 1.00 1.06 1.06
house 3.6 14.29 0.93 1334 1675 0.96 16.02 100 153 154 101 1.68 1.70 101 1.06 107 1.01 0.97
gamel 4.6 1487 057 850 15.89 0.72 11.42 103 119 122 1.01 157 159 100 120 120 100 1.28 128
landscape 7.2 15.05 0.88 13.26 1850 0.94 17.36 101 119 121 101 126 127 101 147 148 1.02 130 132
hall 7.7 13.68 114 1558 18.64 0.94 17.51 102 1.28 131 1.01 145 146 101 1.49 151 101 111 113
3840x2160 (8M)  chicken 5.9 19.12 0.85 1631 20.00 0.83 16.58 101 210 212 101 242 244 101 157 158 1.01 117 119
Table 2. vbench videos’ descrip- Table 3. VOD score improves Table 4. Intel QSV and Table 5. libx265 and
tion. with video resolution for NVIDIA NVENC achieve libvpx-vp9 can reduce

NVIDIA NVENC and Intel QSV

on the VOD scenario.

Table 3 reports the speed (S) ratios, bitrate (B) ratios,
and VOD scores for two GPUs: the Intel QuickSync Video
(QSV) [9] featured in the Intel core i7-6700K CPU, the NVIDIA
NVENC [39] found in the GTX 1060 GPU. To obtain these
results we used the highest effort settings on both GPUs and
varied the target bitrate using a bisection algorithm until
results satisfy the quality constraints by a small margin. The
results show that the QSV scores are generally higher than
the NVENC scores; this is mostly due to the higher speed ra-
tios since bitrate ratios are comparable in the two platforms.
Unfortunately, we cannot offer much deeper explanation for
the difference as the GPUs do not allow software to inspect
intermediate results, effectively creating a black box.

Both GPUs show higher speed improvements for higher
resolution videos, since they better amortize the data trans-
fer overheads, and enable higher parallelism across the mac-
roblocks. They also show higher speedups for more com-
plex videos, since they perform all the operations in parallel,
while the software needs to run for a longer time to apply
the more complex encoding tools: Having a curated video set
is important here. Using Xiph or Netflix dataset — both con-
taining only high resolution, high entropy videos — would
overestimate the benefits of GPU transcoding.

Both GPUs show significant speed benefits that compen-
sate the losses in video bitrate. Their higher speed would
allow a significant downsizing of the transcoding fleet at a
video sharing infrastructure. However, they need to com-
pensate with an increase in storage and network costs. The
precise balance between compute costs, storage, and net-
work will depend on the specifics of the service, reinforcing
the need to report metrics separately in addition to the score.
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real-time performance on
the Live scenario.

bitrate significantly while
being iso-Quality on the
Popular scenario.

Given the speedups achieved by these hardware imple-
mentations, future hardware video transcoders might imple-
ment more advanced encoding tools to trade slower speed
for higher video quality at lower bitrate, enabling service
providers to tune them to their specific use cases.

6 Live and Popular Analysis

That was the VOD scenario. We now evaluate how GPUs
perform on the Live and Popular scenarios. Both are key
use cases in services like YouTube and Facebook.

6.1 Live Streaming

While speed is important for VOD, it is critical for the Live
scenario. GPUs here shine as low latency transcoding is
their intended application, while software encoders have
to significantly decrease effort levels in order to meet the
real-time speed constraint. In fact, to meet the real time
constraint our reference transcodes have an effort level that
is inversely proportional to the resolution of the input video.
This explains the positive GPU Live results seen in Table 4.
When real time speed is required, software encoders degrade
the transcode quality much more than hardware.

There are a number of configurations for these GPUs that
would have met the Live scenario constraints. For this exper-
iment, we chose to maintain reference quality, which creates
an interesting comparison with VOD. Contrary to what we
have observed in the VOD scenario, using GPUs in this case
generally incurs no tradeoffs. Our results show that hard-
ware encoders achieve the same quality as our reference
while also reducing the transcode bitrate. The only excep-
tions being low entropy videos, for which the GPUs struggle
to degrade quality and bitrate gracefully. Had the benchmark
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not included low entropy videos and different scenarios, such
insights would not be visible.

Even on the Live scenario, where hardware encoders
do not incur sacrifices in bitrate and quality, we find that
hardware encoders exceed real-time and thus are potentially
faster than they need to be. As with VOD this again raises the
possibility that the excess speedups seen on GPUs might be
better spent finding higher quality transcodes.

6.2 Popular Videos

The Popular scenario deals with very high effort transcoding
for videos that receive the most playbacks. As we saw in the
VOD scenario, the hardware video transcoders require addi-
tional bitrate to match the quality of the reference transcodes
in the VOD scenario. Given that the reference quality of the
Popular scenario is higher than VOD, it was impossible for
either of the GPUs to produce a single valid transcode for
this scenario. GPUs are valuable in the VOD and Live sce-
narios because of their speed. However, speed is the least
valuable metric in the Popular scenario. Software encoders
are the best option today for optimizing bitrate and quality
on highly popular videos, where the effort will be amortized
across many playbacks.

Table 5 shows the benchmark scores for the recent libx265
and libvpx-vp9 encoders when transcoding Popular videos.
For both, we selected a fixed effort level such that all videos
can be encoded within the speed constraint®. Our results
confirm what was seen earlier in Figure 2: both libx265 and
libvpx-vp9 encoders are superior to the reference libx264
when transcoding speed is not considered. Both encoders are
capable of significantly reducing bitrate for most videos at no
quality loss, especially for HD and higher resolutions. Notice
that the reference transcode operations in this scenario use
the highest quality setting in libx264. This reflects how newer
codecs (H.265, VP9) and relative encoders keep improving
video compression, a trend that is expected to continue with
the release of the AV1 codec by the end of the year [15].

7 Conclusions

We have described vbench, a video transcoding benchmark
that has an algorithmically curated set of representative
videos, metrics, and reporting guidelines that reflect com-
plex real world tradeoffs between quality, compression, and
speed. vbench quantitatively selected dataset improves on
existing video collections assembled based on qualitative
visual properties. With the same methodology we can up-
date vbench videos over time to reflect changes in upload
trends. The reference transcoding operations reflect those
of large video sharing infrastructures and are thus a useful

bcpu-used 0 for libvpx-vp9 and -preset veryslow for libx265. A empty score
indicates that either the bitrate or quality constraints are not met (high-
lighted in red)
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baseline. The metrics guide improvement over this baseline
in meaningful directions.

Our studies of video transcoding reveal a microarchitec-
tural sensitivity to inherent video entropy. There are lim-
its on the benefits of vectorization for this workload while
the viability of hardware support for transcoding depends
strongly on the context; current GPUs are well suited for live
streaming yet unable to meet the quality and compression
demands of popular videos. We expect this benchmark and
the insights it will produce will promote much needed inno-
vation in video transcoding, a key warehouse scale workload
that is at the core of all video sharing infrastructures.
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