
...

THE Q100 DATABASE PROCESSING
UNIT

...
THIS ARTICLE DEMONSTRATES A PROOF-OF-CONCEPT DESIGN, CALLED THE Q100, WHICH

PROVIDES ONE TO TWO ORDERS OF MAGNITUDE IMPROVEMENT IN EFFICIENCY OVER

SOFTWARE DATABASE MANAGEMENT SYSTEMS. THE Q100 EXPLOITS THE INNATE

STRUCTURE OF THE WORKLOAD, EFFICIENTLY MOVING AND MANIPULATING THE DATA IN

TABLES AND COLUMNS RATHER THAN AS AN UNSTRUCTURED ARRAY OF BYTES. THIS

APPROACH COMPLEMENTS OTHER SPECIALIZED COMPUTATION ENGINES.

......Today, big data analytics are not
just important, they are essential. Analyses
must process large volumes of various data
at or near real-time velocity. With the big
data technology and services market fore-
cast to grow at a 26.24 percent annual
growth rate through 2018 to reach $41.52
billion,1 and with 2.6 exabytes of data cre-
ated each day,2 the research community
must develop machines that can keep up
with this data deluge.

For its part, the database management sys-
tem (DBMS) software community has been
exploring optimizations such as using column
stores,3–5 pipelining operations,6 and vectoriz-
ing operations7 to take advantage of commod-
ity server hardware. This work applies those
same techniques, but in hardware, to con-
struct a domain-specific processor for data-
bases. Just as conventional DBMSs operate on
data in logical entities of tables and columns,
our processor manipulates the same data
primitives. Just as DBMSs use software pipe-
lining between relational operators to reduce
intermediate results, we too can exploit pipe-
lining between relational operators imple-
mented in hardware to increase throughput

and reduce query-completion time. In light of
the SIMD instruction set advances in general-
purpose CPUs in the last decade, DBMSs also
vectorize their implementations of many oper-
ators to exploit data parallelism. Our hardware
does not use vectorized instructions but
exploits data parallelism by processing multi-
ple streams of data, corresponding to tables
and columns, at once.

Streams of data. Pipelines. Parallel func-
tional units. All of these techniques have long
been known to be excellent fits for hardware,
creating an opportunity to address some
practical real-world concerns regarding big
data. Our vision is of a class of domain-spe-
cific processors called database processing
units (DPUs), which are analogous to GPUs.
Whereas GPUs target graphics applications,
DPUs target analytic database workloads. As
GPUs operate on vertices, DPUs operate on
tables and columns.

We designed and evaluated a first DPU
called the Q100, a performance- and energy-
efficient data analysis accelerator. Q100 con-
tains a heterogeneous collection of fixed-
function application-specific integrated cir-
cuit (ASIC) tiles, each of which implements a

Lisa Wu

Intel Labs

Andrea Lottarini
Timothy K. Paine

Martha A. Kim
Kenneth A. Ross
Columbia University

...

34 Published by the IEEE Computer Society 0272-1732/15/$31.00!c 2015 IEEE

well-known relational operator, such as a join
or sort. The Q100 tiles operate on streams of
data corresponding to tables and columns,
over which the microarchitecture aggressively
exploits pipeline and data parallelism.

The Q100 instruction set architecture
The Q100 instructions implement standard

relational operators that manipulate database
primitives such as columns, tables, and con-
stants. The producer and consumer relation-
ships between operators are captured with
dependencies specified by the instruction set
architecture (ISA). Queries are represented as
graphs of these instructions, with the edges rep-
resenting data dependencies between instruc-
tions. For execution, a query is mapped onto a
spatial array of specialized processing tiles, each
of which carries out one of the primitive func-
tions. When producer-consumer node pairs
are mapped to the same temporal stage of the
query, they operate as a pipeline with data
streaming from producer to consumer.

The basic instruction is a spatial one,
implementing standard SQL-esque operators
(namely, select, join, aggregate, boolgen, col-
filter, partition, and sort). Other helper
spatial instructions (stitch, append, and con-
catenate) perform various auxiliary functions,
such as tuple reconstruction and query execu-
tion optimization. Figure 1a shows a simple
query written in SQL to produce a summary
sales quantity report per season for all items
shipped as of a given date. Figure 1b shows
the entire query as one graph with each shape

representing a different spatial instruction
and edges representing data dependencies.

In situations where a query does not fit on
the array of available Q100 of tiles, it must
be split into multiple temporal stages. These
temporal stages are called temporal instruc-
tions and are executed in order. Each tempo-
ral instruction contains a set of spatial
instructions, pulling input data from the
memory subsystem and pushing completed
partial query results back to the memory sub-
system. Figure 2a shows an example array of
specialized hardware tiles, or a resource pro-
file, for a particular Q100 configuration. Fig-
ure 2b depicts how the query must to be
broken into three temporal instructions,
because the resource profile does not have
enough column selectors, column filters,
aggregators, or appenders at each stage.

This ISA is energy efficient because it
closely matches building blocks of our target
domain, while simultaneously encapsulating
operations that can be implemented effi-
ciently in hardware. Spatial instructions are
executed in a dataflow style seen in dataflow
machines of the 80s,8,9 the 90s,10 and more
recently,11–13 eliminating complex issue and
control logic, exposing parallelism, and pass-
ing data dependencies directly from producer
to consumer. All of these features provide
performance benefits and energy savings.

The Q100 microarchitecture
The Q100 design uses hardware tiles that

implement the Q100 ISA. Using 19 TPC

LINEITEM

bool-
gen

Col4

Col3

Col2

Col1

col-
select

col-
select

col-
select

(b)

col-
filter

col-
filter

col-
filter

Bool1

Stitch

Col5

Col8

Tab1

Agg

Agg

Agg

Agg

Parti-
tion

Tab2

Tab3

Tab4

Tab5

Append

Result

Tab6

Tab7

Concat

Append

Append

col-
select

Col6

Col7

SELECT S_SEASON,

 SUM(S_QUANTITY) as SUM_QTY

FROM SALES

WHERE S_SHIPDATE <= '1998-12-01'

 - INTERVAL '90' DAY

GROUP BY S_SEASON

ORDER BY S_SEASON
(a)

Figure 1. An example query for producing a summary sales quantity report. (a) A SQL query and (b) the corresponding Q100

query plan, where nodes represent relational operators, and the edges between them are data dependencies.

...

MAY/JUNE 2015 35

Benchmark H (TPC-H) queries as bench-
marks, we performed a detailed Q100 design
space exploration with which we explored the
tradeoffs and selected three interesting Q100
designs: minimal power, peak performance,
and a balanced design that offers maximal
performance per watt. We then explored the
impact of communication—both intra-tile
and memory—on these three designs.

The Q100 tile implementation and characterization
The Q100 contains 11 types of hardware

tile corresponding to the 11 operators in the
ISA. As in the ISA, we break the discussion
into core functional tiles and auxiliary helper
tiles. Table 1 gives the facts and figures of the
Q100 tile implementation and characeriza-
tion. The slowest tile determines the Q100’s
clock cycle. As Table 1 shows, the partitioner
limits the Q100 frequency to 315 MHz.

Methodology. Each tile was implemented in
Verilog and synthesized, placed, and routed
using Synopsys 32-nm generic libraries with
the Synopsys15 design and Integrated Circuit
(IC) compilers to produce timing, area, and
power numbers. We report each design’s
post-place-and-route critical path as logic
delay plus clock network delay, adhering to

the industry standard of reporting critical
paths with a margin.

Q100 functional tiles. The sorter sorts its
input table using a designated key column
and a bitonic sort.16 In general, hardware sort-
ers operate in batches and require all items in
the batch to be buffered prior to the start of
the sort. Because buffers and sorting networks
are costly, this limits the number of items that
can be sorted at once. For the Q100 tile, this
is 1,024 records, so to sort larger tables, they
must first be partitioned with the partitioner.

The partitioner splits a large table into
multiple smaller tables called partitions. Each
row in the input table is assigned to exactly
one partition based on the value of the key
field. The Q100 implements a range parti-
tioner, which splits the space of keys into
contiguous ranges. We chose this because it
tolerates irregular data distributions17 and
produces ordered partitions, making it a suit-
able precursor to the sorter.

The joiner performs an inner-equijoin of
two tables, one with a primary key and the
other with a foreign key. To keep the design
simple, the Q100 currently supports only
inner-equijoins. They are by far the most
common type of join, although extending
the joiner to support other types (such as

2 colselect 2 colfilter 2 boolgen 1 concat 1 stitch 1 part 2 aggregator 2 appender

Q100 execution schedule

Example Q100 resource profile

(a)

(b)

Temporal
instruction #1

Temporal
instruction #2

Temporal
instruction #3

Figure 2. Given a Q100 instance with finite resources, as shown in (a), the query plan is

broken into a sequence of temporal instructions by a scheduling algorithm that attempts to

maximize resource usage and minimize data spillage between instructions.14 In (b), the query

plan from Figure 1 requires three steps to complete.

..
TOP PICKS

..

36 IEEE MICRO

outer-joins) would not increase its area or
power substantially.

The arithmetic logic unit (ALU) tile per-
forms arithmetic and logical operations on
two input columns, producing one output
column. It supports all arithmetic and logical
operations found in SQL (that is, ADD, SUB,
MUL, DIV, AND, OR, and NOT) as well as
constant multiplication and division. We use
these latter operations to work around the cur-
rent lack of a floating-point unit in the Q100.
We use fixed-point arithmetic to support
single-precision floating-point arithmetic, as
most domain-specific accelerators have done.
SQL does not specify precision requirements
for floating-point calculations, and most
commercial DBMSs support either single-
precision floating-point or double-precision
floating-point calculations.

The Boolean generator compares an input
column with either a constant or a second
input column, producing a column of Boo-
lean values. Using just two hardware compa-
rators, the tile provides all six comparisons
used in SQL (that is, EQ, NEQ, LTE, LT,
GT, and GTE). Although this tile could have
been combined with the ALU, offering two
tiles !a la carte leaves more flexibility when

allocating tile resources. The Boolean genera-
tor is often paired with the column filter with
no need for an ALU. It also is often used in a
chain or tree to form complex predicates—
again, not always in a 1-to-1 correspondence
with ALUs.

The column filter takes in a column of
Booleans (from a Boolean generator) and a
second data column. It outputs the same data
column but drops all rows where the corre-
sponding bool is false.

Finally, the aggregator takes in the column
to be aggregated and a “group by” column
whose values determine which entries in the
first column to aggregate. For example, if the
query sums purchases by ZIP code, the data
columns are the purchase totals, and the
group-by is the ZIP code. The tile requires
that both input columns arrive sorted on the
group-by column so that the tile can simply
compare consecutive group-by values to
determine where to close each aggregation.
This decision has tradeoffs. A hash-based
implementation might not require presort-
ing, but it would require a buffer of unknown
size to maintain the partial aggregation
results for each group. The Q100 aggregator
supports all aggregation operations in the

Table 1. Physical design characteristics of the Q100 tiles post place and route, and compared to a Xeon core.

Q100 tiles Tile

Area Power Critical path Design width (bits)*

mm2

Xeon

(%)y mW

Xeon

(%) ns Record Column Comparator

Functional Aggregator 0.029 0.07 7.1 0.14 1.95 — 256 256

Arithmetic logic

unit (ALU)

0.091 0.21 12.0 0.24 0.29 — 64 64

BoolGen 0.003 0.01 0.2 <0.01 0.41 — 256 256

ColFilter 0.001 <0.01 0.1 <0.01 0.23 — 256 —

Joiner 0.016 0.04 2.6 0.05 0.51 1,024 256 64

Partitioner 0.942 2.20 28.8 0.58 3.17† 1,024 256 64

Sorter 0.188 0.44 39.4 0.79 2.48 1,024 256 64

Auxiliary Append 0.011 0.03 5.4 0.11 0.37 1,024 256 —

ColSelect 0.049 0.11 8.0 0.16 0.35 1,024 256 —

Concat 0.003 0.01 1.2 0.02 0.28 — 256 —

Stitch 0.011 0.03 5.4 0.11 0.37 — 256 —...

*Intel E5620 Xeon server with two chips. Each chip contains four cores and eight threads running at 2.4 GHz with a
12-Mbyte last-level cache and three channels of DDR3, providing 24 Gbytes of RAM. Comparisons are done using
estimated single-core area and power consumption derived from published specifications.
†The slowest tile, the partitioner, determines the frequency of Q100 at 315 MHz.

...

MAY/JUNE 2015 37

SQL spec, namely, MAX, MIN, COUNT,
SUM, and AVG.

Q100 auxiliary tiles. The column selector
extracts a column from a table, and the col-
umn stitcher does the inverse, taking multiple
input columns (up to a maximum total
width) and producing a table. This operation
often precedes partitions and sorts where
queries frequently require column A sorted
according to the values in column B. The col-
umn concatenator concatenates correspond-
ing entries in two input columns to produce
one output column. This can cut down on
sorts and partitions when a query requires
sorting or grouping on more than one attrib-
ute (that is, column). Finally, the table
appender appends two tables with the same
schema. This is often used to combine the
results of per-partition computations.

Q100 tile mix design space exploration
To understand the relative utility of each

type of tile, and the tradeoffs among them,
we explored a wide design space of different
sets of Q100 tiles. We began with a sensitivity
analysis of TPC-H performance, evaluating

each type of tile in isolation to bound the
maximum number of useful tiles of each
type. We then carried out a complete design
space exploration, considering multiple tiles
at once, from which we understood the
power performance shape of the Q100 space
and selected three configurations (that is, tile
mixtures) for further analysis.

Methodology. We developed a functional and
timing Q100 simulator in Cþþ. We vali-
dated each tile’s function and throughput
against simulations of the corresponding Ver-
ilog. Because we did not yet have a compiler
for the Q100, we manually implemented
each TPC-H query in the Q100 ISA. Using
the simulator, we confirmed that the Q100
query implementations produce the same
results as the SQL versions running on Mon-
etDB (www.monetdb.org). Given a query
and a Q100 configuration, a scheduling algo-
rithm described and evaluated in our pre-
vious work14 schedules each query into a
sequence of temporal instructions. The simu-
lator produces cycle counts, which we con-
vert to wall clock time using a Q100
frequency of 315 MHz.

Tile count sensitivity. To understand how
sensitive Q100 is to the number of each type
of tile—say, aggregators—we simulate a
range of Q100 configurations, sweeping the
number aggregators, while holding all other
types of tiles at sufficiently high counts so as
not to limit performance. Having run this
experiment for each of the 11 types of tile, we
identified the maximum useful count for
each type of tile.

Design space parameters. We explored the full
tile design space up to the maximum useful
count for each type of tile, except the small
negligible tiles that consumed less than 10
mW. For those tiles, we always allocated the
maximal useful instances.

Power-performance design space. Figure 3
plots the power-performance tradeoffs for
150 Q100 designs. Among these configura-
tions, we selected three designs for further
evaluation. LowPower is an energy-conscious
design point that has just one partitioner, one
sorter, and one ALU, and which consumed

12

Pareto design

HighPerf design

LowPower design

10

8

6

4

2

0
0 0.2 0.4

Power (W)

R
un

tim
e

(m
s)

0.6 0.8

Figure 3. Out of 150 configurations, we selected three designs for further

evaluation: LowPower for an energy-conscious configuration, HighPerf for a

performance-conscious configuration, and Pareto for a design that

maximizes performance per watt.

..
TOP PICKS

..

38 IEEE MICRO

the lowest power among all the configura-
tions. Pareto is a balanced design on the
Pareto-optimal frontier, which, with two par-
titioners, one sorter, and four ALUs, provides
the most performance per watt among the
designs. HighPerf is a performance-optimized
design, with three partitioners, six sorters,
and five ALUs, which maximizes perform-
ance at the cost of a relatively higher power
consumption.

The Q100 communication needs
Having explored the Q100’s computational

needs, we now consider its communication
needs, both on-chip intra-tile communication
and off-chip with memory. Because the target
workload is large-scale data, each of these
channels will need to support substantial
throughput.

Communication topology. In the experiments
and simulations thus far, we have assumed
all-to-all communication for all of the Q100
tiles and memory. However, analytic queries
are not random, and we expect them to have
certain tendencies. Figure 4 indicates how
many times a particular source (y-axis) feeds
into a particular destination (x-axis) across all
of TPC-H. First, we observe that most tiles
communicate to and from memory so often
that we must properly understand and provi-
sion for the Q100 to/from memory band-
width. Second, tiles tend to communicate
with a subset of each other, validating our
hypothesis that the communication was not

truly all-to-all. Third, we note that these
communication patterns do not vary across
the three Q100 designs.

On-chip bandwidth constraints. We envi-
sioned a network on chip (NoC) like the 2D,
80-node mesh on Intel’s TeraFlops chip.18

For a conservative estimate, we scaled down
TeraFlops’s node-to-node 80 Gbytes per sec-
ond (GBps) at 4 GHz to the frequency of the
Q100, resulting in a conservative Q100 NoC
bandwidth of 6.3 GBps.

To understand and quantify the perform-
ance impact of the Q100 NoC bandwidth,
we performed a sensitivity study, sweeping
the bandwidth from 5 to 20 GBps (see Figure
5). The runtime of all queries in all three con-
figurations was normalized to that of the
HighPerf design with unlimited NoC band-
width (ideal). We observed that only a hand-
ful of queries were sensitive to an imposed
NoC bandwidth limit; however, the slow-
down for those queries could be as much as
50!, making interconnect throughput a per-
formance bottleneck when limited to 6.3
GBps.

Off-chip bandwidth constraints. Memory, we
have also seen, is a very frequent communica-
tor, acting as a source or destination for all
types of Q100 tiles. Half of those connec-
tions also required high-throughput connec-
tions. In Figures 6 and 7, we examine the
high, low, and average read and write mem-
ory bandwidth for each query, sorted by

SRC
MEM
AGG
ALU
APPEND
BOOLGEN
COLFILTER
COLSELECT
CONCAT
JOIN
PARTITION
SORT
STITCH

M
EM

A
G

G
A

LU
A

PP
EN

D
B

O
O

LG
EN

C
O

LF
IL

TE
R

C
O

LS
EL

EC
T

C
O

N
C

AT
JO

IN
PA

R
TI

TI
O

N
SO

R
T

ST
IT

C
H

D
ST

M
EM

A
G

G
A

LU
A

PP
EN

D
B

O
O

LG
EN

C
O

LF
IL

TE
R

C
O

LS
EL

EC
T

C
O

N
C

AT
JO

IN
PA

R
TI

TI
O

N
SO

R
T

ST
IT

C
H

D
ST

M
EM

A
G

G
A

LU
A

PP
EN

D
B

O
O

LG
EN

C
O

LF
IL

TE
R

C
O

LS
EL

EC
T

C
O

N
C

AT
JO

IN
PA

R
TI

TI
O

N
SO

R
T

ST
IT

C
H

D
ST

SRC
MEM
AGG
ALU
APPEND
BOOLGEN
COLFILTER
COLSELECT
CONCAT
JOIN
PARTITION
SORT
STITCH

SRC
MEM
AGG
ALU
APPEND
BOOLGEN
COLFILTER
COLSELECT
CONCAT
JOIN
PARTITION
SORT
STITCH

No. of connections
heat map

No. of connections
heat map

No. of connections
heat map

SCALE 0 40 80 120 160 200 240 280 320 360 400 440 480

Figure 4. A heat map of tile-to-tile connection counts: (a) LowPower, (b) Pareto, and (c) HighPerf designs. Most intra-tile

connections exist mostly when communicating to and from memory.

...

MAY/JUNE 2015 39

average bandwidth. We first notice that
queries vary substantially in their memory
read bandwidths but relatively little in their
write bandwidths. This is largely because ana-
lytic queries take in large volumes of data and
produce comparatively small results, match-
ing the volcano style of software relational
database pipelined execution.19 Second,

queries generally consume more bandwidth
as the design becomes higher performance,
because faster designs tend to process more
data in a smaller period of time. Finally, in
the same fashion that we expect the NoC will
limit performance, realistic available band-
width to and from memory is also likely to
slow query processing.

60.0
LowPower Pareto HighPerf

5 10 15 20 Ideal 5 10 15 20 Ideal 5 10 15 20 Ideal

NOC bandwidth limit (GBps)

50.0
40.0
30.0

R
un

tim
e

no
rm

al
iz

ed
to

 H
ig

hP
er

f i
de

al

20.0
10.0
0.0

q1 q10
q12
q15
q17
q19
q20
q3
q5
q7

q11
q14
q16
q18
q2
q21
q4
q6
q8

Figure 5. Most TPC-H queries are not sensitive to the Q100 intraconnection throughput, except for Q10, Q16, and Q11.

These queries process large volumes of records throughout the query with little local selection conditions to funnel down the

intermediate results. When network-on-chip (NoC) bandwidth is constrained, these queries could execute 50 times slower.

50.0
45.0
40.0
35.0
30.0
25.0
20.0

LowPower design

SB4
SB3
SB2
SB1

Pareto design HighPerf design

B
an

dw
id

th
 (G

B
ps

)

15.0
10.0
5.0
0.0

q1
4

q1
9

q1
2 q8 q6 q1
7 q7 q5 q1
5 q4 q1 q3 q1
6

q1
8

q2
1 q2 q2
0

q1
0

q1
1

q1
4

q1
7

q1
9 q8 q5 q7 q3 q4 q1
5

q1
2 q6 q1
8 q1 q2
1

q1
6 q2 q1
1

q2
0

q1
0

q1
4

q1
9 q8 q4 q7 q1
2 q1 q3 q1
7

q2
1

q1
5

q1
8 q5 q6 q1
6 q2 q1
0

q2
0

q1
1

SB6
SB5

Figure 6. A plot of all TPC-H query read memory bandwidth demands (high, low, and average), sorted by average. Read

bandwidth varies quite a bit from query to query, with Q10 and Q11 being the most bandwidth starved. For Q100, the

LowPower design is provisioned with four stream buffers, and Pareto and HighPerf designs are provisioned with six stream

buffers, as shown in shaded gradations.

30.0
25.0
20.0

SB2
SB1

15.0
10.0

LowPower design Pareto design HighPerf design

B
an

dw
id

th
 (G

B
ps

)

5.0
0.0

q4 q1
2 q6 q2
0

q1
4

q1
8

q1
5 q2 q1
9

q2
1 q7 q1
6

q1
1

q1
7 q3 q8 q1 q5 q1
0 q4 q1
2 q6 q2
0

q1
4

q1
5

q1
8 q7 q2
1

q1
9

q1
1

q1
7 q2 q3 q1 q5 q8 q1
6

q1
0 q4 q6 q1
2

q1
8

q1
5

q2
0

q1
4

q2
1

q1
9

q1
6 q7 q1
1 q1 q3 q2 q8 q5 q1
7

q1
0

Figure 7. Write bandwidth demands are quite a bit lower than read bandwidth demands for most queries. We sized all three

designs with two stream buffers, providing 10 Gbytes per second (GBps) write bandwidth to memory.

..
TOP PICKS

..

40 IEEE MICRO

To quantify the performance impact of
memory bandwidth, we swept memory read
bandwidth from 10 to 40 GBps and memory
write bandwidth from 5 to 20 GBps (see Fig-
ures 8 and 9). As with the NoC study, only
two or three queries are sensitive to memory
read and write bandwidth limits, but with
much more modest slowdowns.

Performance impact of communication resour-
ces. Applying the NoC and memory band-
width limits discussed earlier, we simulated an
NoC bandwidth cap of 6.3 GBps, a memory
read limit of 20 GBps for LowPower and 30
GBps for Pareto and HighPerf, and a memory
write limit of 10 GBps. Figure 10 shows the
impact as each of these limits is applied to an
unlimited-bandwidth simulation. On account
of on-chip communication, queries slow
down 33 to 61 percent, with only a slight
additional loss on account of memory to 34
to 62 percent slowdown overall. These effects
are largely due to Q10 and Q11, the two
most memory-hungry queries, which suffer
1.4 to 1.5 times slowdown and 6 to 11 times
slowdown, respectively, compared to software.

Our simulator models a uniform memory
access latency of 160 ns, based on a 300-cycle
memory access time from a 2-GHz CPU.
When the imposed interconnect and mem-
ory throughput slow the execution of a spatial
and a temporal instruction, respectively, the
simulator reflects that—although we found
that throughput was primarily interconnect-
limited, and thus the visible slowdown
beyond that due to memory was negligible.
The Q100 reduces total memory accesses rel-
ative to software implementations by elimi-
nating many reads and writes of intermediate
results. For the remaining memory accesses,
the Q100 can mask most stalls thanks to
heavily parallelized computation that exploits
both data and pipeline parallelism.

Area and power impact of communication
resources. Starting with the area and power
for the tiles in each Q100 design, we added
the additional area and power due to the
NoC and stream buffers. Table 2 lists the
area of the three design points broken down
by tile, NoC, and stream buffers. We added
an extra 30 percent area and power to the

0.0
2.0
4.0
6.0
8.0

10.0
12.0

10 20 30 40 Ideal

R
un

tim
e

no
rm

al
iz

ed
to

 H
ig

hP
er

f i
de

al
 LowPower

10 20 30 40 Ideal

Memory read bandwidth limit (GBps)

Pareto

302010 40 Ideal

HighPerf
q1 q10
q11 q12
q14 q15
q16 q17
q18 q19
q2 q20
q21 q3
q4 q5
q6 q7
q8

Figure 8. Similar to NoC bandwidth, most queries are not sensitive to memory read bandwidth. However, in the HighPerf

design, more resources allow for a more efficient scheduling of temporal instructions, reducing high-volume communications

to and from memory.

0.0

5.0

10.0

15.0

20.0

25.0

5 10 15 20 Ideal

 R
un

tim
e

no
rm

al
iz

ed
to

 H
ig

hP
er

f i
de

al LowPower

5 10 15 20 Ideal
Memory write bandwidth limit (GBps)

Pareto

5 10 15 20 Ideal

HighPerf
q1 q10
q11 q12
q14 q15
q16 q17
q18 q19
q2 q20
q21 q3
q4 q5
q6 q7
q8

Figure 9. With 10 GBps of memory write bandwidth, only one or two queries are performance-limited by memory write

bandwidth.

...

MAY/JUNE 2015 41

Q100 designs for the NoC, based on the
characteristics of the TeraFlops implementa-
tion.18 For the stream buffers, we added 0.13
mm2 and 0.1 W for each stream buffer.17 In
sum, the Q100 remains quite small, with the
large, HighPerf configuration, including
NoC and stream buffers, taking 17.3 percent
of the area and 26.1 percent of the power of a
single Xeon core.

The Q100 evaluation
Taking what we’ve learned about the

Q100 system, its ISA, its implementation,
and its internal and external communication,
we now compare our three configurations,
LowPower, Pareto, and HighPerf, with a con-
ventional software DBMS. This evaluation
has three parts: initial power and perform-
ance benchmarking for the TPC-H queries
as executed on a conventional DBMSþCPU
system, comparison of Q100’s execution of
TPC-H to that system’s, and, finally, an eval-
uation of how a Q100 designed for one scale
of database handles the same queries over a
database 100 times larger.

Methodology
We measured the performance and energy

consumption of MonetDB 11.11.5 running

on a Sandy Bridge Xeon server and executing
the set of TPC-H queries. Each reported result
is the average of five runs during which we
measured the elapsed time and energy con-
sumption. For the latter, we used Intel’s Run-
ning Average Power Limit (RAPL) energy
meters,20,21 which expose energy usage esti-
mates to software via model-specific registers
deducting the idle background power.

Although MonetDB supports multiple
threads, our measurements of power and
speedups indicate that individual TPC-H
queries do not parallelize well, even for large
databases (that is, 40 Gbytes). Here, we com-
pare the Q100’s performance and energy to
the measured single-threaded values, as well
as to an optimistic estimate of a 24-way par-
allelized software query, one that runs 24
times faster than the single threaded at the
same average power as a single software
thread.

The Q100 performance comparison
Figure 11 plots the query execution time

on the Q100 designs relative to the execution
time on single-threaded MonetDB. We see
that Q100 performance exceeds a single soft-
ware thread by 37 to 70 times, and exceeds a
perfectly scaled 24-thread software by 1.5 to
2.9 times. This is primarily because of
Q100’s reduced instruction control costs,
which are a byproduct of the large instruction
granularity, where each Q100 instruction
does the work of billions (or more, depend-
ing on the data size) of software instructions.
In addition, the Q100 processes many
instructions at once, in pipelines and in paral-
lel, generating further speedups. Finally, the
Q100, having brought some data onto the
chip, exploits on-chip communication tile
parallelism to perform multiple operations
on the data before returning the results to
memory, thereby maximizing the work per
memory access and hiding the memory
latency with computation.

The Q100 energy comparison
Figure 12 plots the query energy con-

sumption relative to the energy consumption
on single-threaded MonetDB. Fixed-func-
tion ASICs, which comprise the Q100, are
inherently more energy efficient than gen-
eral-purpose processors. Both industry and

0
0.5
1.0
1.5
2.0
2.5
3.0

LowPower Pareto HighPerf
R

un
tim

e
no

rm
al

iz
ed

to
 H

ig
hP

er
f i

de
al

Ideal

+ NoC bandwidth limit
+ Memory bandwidth +
NoC bandwidth limit

Figure 10. From the bandwidth heat maps

plotted earlier, we see that Q100 was

demanding a lot more NoC bandwidth than

provisioned. Here, we plotted runtime with

respect to no bandwidth-limit penalties, and

we see a large slowdown at 30 to 60

percent, a caution for future

implementations to design sufficient

bandwidth for intra-tile connections.

..
TOP PICKS

..

42 IEEE MICRO

academia, for example, state that GPUs are
10 to 1,000 times more efficient than multi-
core CPUs for well-suited graphics kernels.
Similarly, the Q100 is 1,400 to 2,300 times
more energy efficient than MonetDB when
executing the analytic queries for which it
was designed. The energy efficiency of our
Pareto design is 1.1 times better than our

LowPower design and 1.6 times better than
our HighPerf design.

Scaling up data
Finally, as big data continues to grow, we

wanted to evaluate how the Q100 handles
databases that are orders of magnitude larger
than the ones for which it was initially

Table 2. Area and power of the three Q100 configurations, broken down by tile, on-chip interconnect, and

stream buffers.

Q100

configuration

Area Power

Tiles NoC

Stream

buffers Total Tiles NoC

Stream

buffers Total

mm2 mm2 mm2 Xeon (%) W W W Xeon (%)

LowPower 1.890 0.567 0.520 7.0 0.238 0.071 0.400 14.2

Pareto 3.107 0.932 0.780 11.3 0.303 0.091 0.600 19.9

HighPerf 5.080 1.524 0.780 17.3 0.541 0.162 0.600 26.1

0.0

0.1

1.0

10.0

100.0

q1 q2 q3 q4 q5 q6 q7 q8 q10 q11 q12 q14 q15 q16 q17 q18 q19 q20 q21 AVG

Ideal 24-thread software

MonetDB 1-thread software

R
un

tim
e

no
rm

al
iz

ed
 to

 M
on

et
D

B
 1

-th
re

ad
 s

of
tw

ar
e

(%
)

LowPower Q100
Pareto Q100
HighPerf Q100

Figure 11. TPC-H query runtime normalized to MonetDB single-threaded software shows a performance improvement of 37

to 70 times on average across all queries.

0.0

0.1

1.0

10.0

100.0

q1 q2 q3 q4 q5 q6 q7 q8 q10 q11 q12 q14 q15 q16 q17 q18 q19 q20 q21 AVG

EN
er

gy
 n

or
m

al
iz

ed
 to

M
on

et
D

B
 1

-th
re

ad
 s

of
tw

ar
e

(%
)

LowPower Q100
Pareto Q100
HighPerf Q100 Ideal 24-thread software

MonetDB 1-thread software

Figure 12. TPC-H query energy consumption normalized to MonetDB single-thread running on cores consuming non-idle

power shows 691 to 983 times energy efficiency on average across all queries.

...

MAY/JUNE 2015 43

developed. Thus, we performed the same
Q100-MonetDB comparison using 100
times larger data, a TPC-H scaling factor of
SF1. Figures 13 and 14 show the results.
With the input data having grown by 100
times, the Q100 speedup over software
dropped from 100 to 10 times. This is
because the initial design configuration tar-
geted a much smaller dataset size, and there-
fore the optimal design point reflected the
best performance efficiency for the smaller
dataset. Another reason is that the Q100
sorter can only sort up to 1,024 records at

once, and bigger input datasets require many
more partitioners and sorters for processing
than the smaller datasets. However, the total
energy remains 100 times lower regardless of
data size.

A s data quantities continue to explode,
technology must keep pace. To mitigate

commensurate increases in time and energy
required to process this data with conven-
tional DBMSs running on general-purpose
CPUs, this article has presented the Q100, a
DPU for analytic query workloads.

This research proposes a novel class of
domain-specific accelerators for big data. The
Q100 demonstrates the feasibility of a new
class of domain-specific accelerators. Unlike
prior work that compiles queries to hardware
(such as LINQits22 or Teradata [www.teradata
.com]), DPUs use domain-specific circuits to
accelerate analytic queries in general. The
Q100 is one instance of such a DPU that dem-
onstrates the potential of this acceleration style
and opens new approaches for both the archi-
tecture and database communities.

The Q100 architecture embodies a unique
approach toward efficiency with coarse-
grained operations and operands. Specializing
in granularities that are too large makes the
solution not broadly applicable (for example,
see recent H.264 work from Stanford23),
whereas specializing in granularities that are
too small provides flexibility but sacrifices
efficiency (for example, AVX or other vector
instructions). This work uniquely deploys a
collection of heterogeneous building blocks
whose operations and operands match the
computing and data primitives used in rela-
tional analytic applications. These spatial
instructions eliminate complex issue and con-
trol logic, resulting in a solution that both
broadly applies to big data analytics and pro-
vides orders of magnitude performance and
energy efficiency. This architecture also dem-
onstrates the potential of data-oriented spe-
cialization. Moving data through the
memory subsystem and CPU cache hierarchy
consumes more than double the energy of the
computation itself.24 With an ASIC designed
specifically to manipulate relational tables,
the Q100 delivers an order of magnitude
improvement in energy efficiency.

0
10
20
30
40
50
60
70
80
90

100
 MonetDB 1-thread software

q1

q2

q3

q4

q5

q6

q7

q1
0

q1
2

q1
4

q1
5

q1
6

q1
8

q1
9

q2
1

AV
G

La
rg

e
da

ta
se

t %
 ru

nt
im

e
no

rm
al

iz
ed

 to
 1

-th
re

ad
 s

of
tw

ar
e

LowPower

Pareto

HighPerf

Figure 13. With a dataset that is 100 times the size of our previous input

tables, TPC-H still shows a 10 times performance improvement relative to

software on average.

0.0

0.1

1.0

10.0

100.0
MonetDB 1-thread software

q1

q2

q3

q4

q5

q6

q7

q1
0

q1
2

q1
4

q1
5

q1
6

q1
8

q1
9

q2
1

A
VG

La
rg

e
da

ta
se

t %
 e

ne
rg

y
no

rm
al

iz
ed

 to
 1

-th
re

ad
 s

of
tw

ar
e

LowPower
Pareto
HighPerf

Figure 14. With a 100 times larger dataset, the Q100 still consumes 1/100th

of the energy that software consumes.

..
TOP PICKS

..

44 IEEE MICRO

The Q100 streaming architecture provides
scalability, an important attribute for big data
acceleration. Using spatial instructions, the
architecture eliminates data dependency stalls
by exposing parallelism and streaming data
directly from producer to consumer. We dem-
onstrated how this streaming architecture’s
energy efficiency is insensitive to input data
size and scalable. This result is particularly sig-
nificant in light of the large volumes of data
used in modern analyses.

Looking forward, the system architecture
provides modularity for further expansion.
The modularity of the Q100 architecture
makes it easy to introduce other streaming
accelerators, such as a regular expression
matching or a compression/decompression
engine, to expand both the use and benefits
of having a big data accelerator.

MICRO

..
References
1. IDC Research, “Worldwide Big Data Tech-

nology and Services 2014–2018 Forecast,”

Sept. 2014; www.idc.com/getdoc.jsp?

containerId¼250458.

2. A. McAfee and E. Brynjolfsson, “Big Data:

The Management Revolution,” Harvard

Business Rev., 2012; https://hbr.org/2012

/10/big-data-the-management-revolution/ar.

3. S. Idreos et al., “MonetDB: Two Decades of

Research in Column-Oriented Database

Architectures,” IEEE Data Eng. Bull., vol.

35, 2012, pp. 40–45.

4. A. Lamb et al., “The Vertica Analytic Data-

base: C-Store 7 Years Later,” Proc. VLDB

Endowment, vol. 5, no. 12, 2012, pp.

1790–1801.

5. D.J. Abadi, P.A. Boncz, and S. Harizopoulos,

“Column-Oriented Database Systems,”

Proc. VLDB Endowment, vol. 2, no. 2, 2009,

pp. 1664–1665.

6. D.J. Abadi et al., “Materialization Strategies

in a Column-Oriented DBMS,” Proc. IEEE

23rd Int’l Conf. Data Eng., 2007, pp.

466–475.

7. M. Zukowski and P. Boncz, “Vectorwise:

Beyond Column Stores,” IEEE Data Eng.

Bull., vol. 35, 2012, pp. 21–27.

8. L. Wu et al., “Q100: The Architecture and

Design of a Database Processing Unit,”

Proc. 19th Int’l Conf. Architectural Support

for Programming Languages and Operating

Systems, 2014, pp. 255–268.

9. J. Gurd, C.C. Kirkham, and I. Watson, “The

Manchester Prototype Dataflow Com-

puter,” Comm. ACM, vol. 28, no. 1, 1985,

pp. 34–52.

10. J.B. Dennis, Advanced Topics in Data-flow

Computing, Prentice-Hall, 1991.

11. J. Hicks et al., “Performance Studies of the

Monsoon Dataflow Processor,” J. Parallel

and Distributed Computing, vol. 18, no. 3,

1993, pp. 273–300.

12. S. Swanson et al., “The Wavescalar

Architecture,” ACM Trans. Computer Sys-

tems, vol. 25, no. 2, 2007, article 4.

13. M. Gebhart et al., “An Evaluation of the

TRIPS Computer System,” Proc. 14th Int’l

Conf. Architectural Support for Program-

ming Languages and Operating Systems,

2009, doi:10.1145/1508244.1508246.

14. A. Parashar et al., “Triggered Instructions:

A Control Paradigm for Spatially-

Programmed Architectures,” Proc. 40th

Ann. Int’l Symp. Computer Architecture,

2013, pp. 142–153.

15. “32/28nm Generic Library for IC Design,

Design Compiler, IC Compiler,” Synopsys,

2015; www.synopsys.com/Community

/UniversityProgram/Pages/32-28nm-generic

-library.aspx.

16. M.F. Ionescu and K.E. Schauser,

“Optimizing Parallel Bitonic Sort,” Proc.

11th Int’l Parallel Processing Symp., 1997,

pp. 303–309.

17. L. Wu et al., “Navigating Big Data with

High-Throughput, Energy-Efficient Data Par-

titioning,” Proc. 40th Ann. Int’l Symp. Com-

puter Architecture, 2013, pp. 249–260.

18. S. Vangal et al., “An 80-Tile 1.28TFLOPS

Network-on-Chip in 65nm CMOS,” Proc.

IEEE Int’l Solid-State Circuits Conf., 2007,

pp. 98–589.

19. G. Graefe and W.J. McKenna, “The Volcano

Optimizer Generator: Extensibility and Effi-

cient Search,” Proc. 9th Int’l Conf. Data

Eng., 1993, pp. 209–218.

20. “Intel 64 R and IA-32 Architectures Soft-

ware Developer’s Manual,” Intel; http://

download.intel.com/products/processor

/manual/253669.pdf.
...

MAY/JUNE 2015 45

21. D. Howard et al., “RAPL: Memory Power

Estimation and Capping,” Proc. ACM/IEEE

Int’l Symp. Low-Power Electronics and

Design, 2010, pp. 189–194.

22. E.S. Chung, J.D. Davis, and J. Lee,

“LINQits: Big Data on Little Clients,” Proc.

40th Int’l Symp. Computer Architecture,

2013, pp. 261–272.

23. R. Hameed et al., “Understanding Sources

of Inefficiency in General-Purpose Chips,”

Proc. 37th Int’l Symp. Computer Architec-

ture, ISCA, 2010, pp. 37–47.

24. W.J. Dally et al., “Efficient Embedded

Computing,” Computer, vol. 41, no. 7,

2008, pp. 27–32.

Lisa Wu is a research scientist at Intel Labs.
Her research interests include computer archi-
tecture, accelerators, energy-efficient comput-
ing on high-performance computing, and
emerging applications related to big data,
machine learning, and computational biology.
Wu has a PhD in computer science from

Columbia University. She is a member of the
ACM SIGARCH. Contact her at lisa.wu
@intel.com.

Andrea Lottarini is a PhD student in the
Department of Computer Science at
Columbia University. His research interests
include computer architecture and heteroge-
neous computing. Lottarini has an MS in
computer science from Universit!a di Pisa
and Scuola Superiore Sant’Anna. Contact
him at flottarini@cs.columbia.edu.

Timothy K. Paine is a master’s student in
the Department of Computer Science at
Columbia University. His research interests
include hardware accelerators for machine
learning and data processing. Paine has a BS
in computer science from Columbia Univer-
sity. Contact him at tkp2108@columbia.edu.

Martha A. Kim is an assistant professor in
the Computer Science Department at
Columbia University. Her research interests
include computer architecture, parallel hard-
ware and software systems, and energy-
efficient computation on big data. Kim has a
PhD in computer science from the University
of Washington. She is a member of IEEE
and the ACM. Contact her at martha@cs
.columbia.edu.

Kenneth A. Ross is a professor in the Com-
puter Science Department at Columbia Uni-
versity. His research focuses on database
management systems, particularly their per-
formance on modern multicore machines,
GPUs, and other accelerator platforms. Ross
has a PhD in computer science from Stanford
University. He is a member of the ACM.
Contact him at karg@cs.columbia.edu.

..
TOP PICKS

..

46 IEEE MICRO

