Pipelining a Triggered Processing Element

Thomas J. Repetti
Dept. of Computer Science, Columbia University
trepetti@cs.columbia.edu

Martha A. Kim
Dept. of Computer Science, Columbia University
martha@cs.columbia.edu

ABSTRACT

Programmable spatial architectures composed of ensembles
of autonomous fixed-ISA processing elements offer a com-
pelling design point between the flexibility of an FPGA and
the compute density of a GPU or shared-memory many-core.
The design regularity of spatial architectures demands exam-
ination of the processing element microarchitecture early in
the design process to optimize overall efficiency.

This paper considers the microarchitectural issues sur-
rounding pipelining a spatial processing element with triggered-
instruction control. We propose two new techniques to miti-
gate pipeline hazards particular to spatial accelerators and
non-program-counter architectures, evaluating them using in-
vivo performance counters from an FPGA prototype coupled
with a rigorous VLSI power and timing estimation methodol-
ogy. We consider the effect of modern, post-Dennard-scaling
CMOS technology on the energy-delay tradeoffs and identify
a set of microarchitectures optimal for both high-performance
and low-power application settings. Our analysis reveals the
effectiveness of our hazard mitigation techniques as well as the
range of microarchitectures designers might consider when
selecting a processing element for triggered spatial accelera-
tors.

CCS CONCEPTS

e Computer systems organization — Pipeline com-
puting; Reduced instruction set computing; Multiple instruc-
tion, multiple data; Multicore architectures; Interconnection
architectures; ¢« Hardware — Power and energy;

KEYWORDS

Spatial architectures, pipeline hazards, microarchitecture,
design-space exploration, low-power design

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MICRO-50, October 14—18, 2017, Cambridge, MA, USA

(© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4952-9/17/10. .. $15.00
https://doi.org/10.1145/3123939.3124551

96

Joao P. Cerqueira
Dept. of Electrical Engineering, Columbia University
jd3137Qcolumbia.edu

Mingoo Seok
Dept. of Electrical Engineering, Columbia University
mgseok@ee.columbia.edu

ACM Reference format:

Thomas J. Repetti, Jodo P. Cerqueira, Martha A. Kim, and Min-
goo Seok. 2017. Pipelining a Triggered Processing Element. In
Proceedings of MICRO-50, Cambridge, MA, USA, October 14-18,
2017, 13 pages.

https://doi.org/10.1145/3123939.3124551

1 INTRODUCTION

Spatial accelerators support important workloads such as
information retrieval [22], databases [33-35], string process-
ing [26], and neural networks [8, 9]. A general purpose spatial
array of programmable processing elements can serve these
and other applications with spatial parallelism and direct
inter-processing element communication. In contrast to a
fixed-function accelerator, a programmable accelerator ac-
commodates new workloads and optimization of existing ones.
In such designs, triggered control [19, 20, 32] has demonstra-
ble architectural benefits, reducing both dynamic and static
instruction counts relative to program counter-based control.
This is an important element of reducing energy and delay,
but it is only part of the story.

Total energy consumption is a product of dynamic instruc-
tion count and the energy expended per instruction:

Energy
Program

Energy
Instruction *

__ Instructions
" Program

Instructions

While the architecture and workload determine Program

the microarchitecture and circuit determine %. Total
delay is likewise determined by the archictectural constraint of
dynamic instruction count but also by cycles per instruction

(CPI) and cycles per unit time (frequency):

Time __ Instructions Cycles Time
Program ~ Program Instruction Cycle”
1 i . . .
I‘Cﬂ and ZMC are also properties of the microarchi-
nstruction

Cycle
tecture and underlying circuit technology. Exploring these

elements of energy and delay below the architectural level is
the focus of this paper.

This work investigates the microarchitectural and circuit
design space of triggered processing elements. The replication
factor in a tiled architecture demands deep analysis and
optimization of the central building block: the processing
element (or PE). We focus on the interplay between the
instruction pipeline and supply voltage scaling, as it has
been long established that pipelining can improve instruction
level parallelism, timing closure, and power efficiency through
voltage scaling [2, 3, 16, 27]. Once a pipeline has reduced
the critical path of a circuit, additional opportunity to trade

https://doi.org/10.1145/3123939.3124551
https://doi.org/10.1145/3123939.3124551

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

energy and delay appears. One could maintain nominal supply
voltage and increase clock frequency, maintain the original
clock frequency and reduce supply voltage, or apply some
combination in the middle. Our results reveal the importance
of such design choices. Having explored over 4,000 unique
designs in this space, the energy-delay tradeoff curve spans
71x in energy — from 0.67 to 47.59 pJ / instruction — and
225x in delay — from 1.37 to 309.03 ns / instruction.

Triggered control poses unique sorts of hazards for an
instruction pipeline. To launch an instruction, the front end
must compare the predicate and communication queue state
to a programmed set of trigger conditions, as opposed to just
calculating the next address for the program counter. We
present two new hazard mitigation techniques that help keep
the pipeline full: speculation on upcoming predicate state and
accurate queue status accounting given the current contents
of the pipeline. We find that these techniques reduce the
increases in CPI that otherwise accompany deep pipelines,
together reducing CPI in a 4-stage pipeline by 35%. They
incur some overheads — in the worst case 1.4% area, 8%
power, 20% critical path — but ultimately improve the optimal
design frontier by 20-25% in both energy and delay. While
predicate prediction is applicable specifically to triggered
instruction architectures, the method of determining effective
queue status benefits any spatial architecture with pipelined
processing elements and register queues.

We have released an open-source repository to support
further investigation in this area. It includes System Verilog
implementations of both the single cycle and pipelined mi-
croarchitectures presented here, which in turn can be used in
synthesizable spatial arrays. It is supported by a toolchain
that includes an assembler, functional ISA simulator, Linux
driver and userspace library. All of these are governed by a
single parameter file that configures the architecture (e.g.,
queue counts or instructions per processing element) and
microarchitecture (e.g., turning on/off the aforementioned
hazard mitigation techniques). Lastly, we include a set of ten
triggered instruction microbenchmarks that exhibit a range
of intra-PE behaviors.

In the following section we provide some more background
on triggered architectures in general and the specific trig-
gered ISA we have designed. Section 3 describes our FPGA-
prototype and VLSI power and timing estimation method-
ology. Section 4 and Section 5 present and characterize the
single cycle and pipelined designs respectively. Before closing,
we discuss some limitations and possible extensions of this
work in Section 6 and related work in Section 7.

2 TRIGGERED ARCHITECTURE

All of the microarchitectures we will examine are imple-
mentations of a triggered ISA of our own design. Here, we
provide some background on triggered instruction control
(Section 2.1), a description of our triggered ISA (Section 2.2),
and the supporting toolchain we have released (Section 2.3).

97

T. Repetti et al.

2.1 Background

Triggered control was proposed by Parashar et al. in 2013 [19]
as an alternative to program-counter-based control for spatial
arrays of autonomous PEs. In the triggered scheme, each PE
is programmed with a priority ordered list of guarded atomic
actions. This list represents a finite, statically configured
local pool of datapath instructions, whose eligibility for issue
in any given cycle is determined by a corresponding “trigger”
condition (i.e., the guard). Each cycle, all of the triggers are
compared to designated architectural state — predicate and
queue status, described shortly — to determine whether the
corresponding instruction has been “triggered”. Instructions
are ordered by priority rather than sequence, with the highest
priority triggered instruction issued for execution (Figure 2).

Each trigger-controlled PE is connected to neighboring PEs
by a set of incoming and outgoing tagged data queues over
an interconnect fabric. Tags encode programmable semantic
information that accompanies the data communicated over
these queues. For example, a tag might be used to indicate
the datatype of the accompanying data word or a message to
effect control flow like a termination condition. Tag values at
the head of the input queues determine, in part, whether an
instruction can be fired. The PE also contains a set of single-
bit predicate registers, which can be updated immediately
upon triggering an instruction, or as the result of a datapath
operation. Each trigger’s validity is determined by the state
of the predicate registers, the availability of tagged input
operands on the incoming queues, and capacity on the output
queues for any instructions that write there. Comparison or
logic instructions whose destination is a predicate register
provide control flow equivalent to branching in program-
counter-based ISAs.

By eliminating explicit branches, triggered control reduces
the dynamic instruction count of a given task. Moreover, in
a spatial context, it allows PEs to react quickly to incoming
data. Together these two features help multiple PEs to work
together in an efficient processing chain: each PE in the chain
works on the current data item, and then efficiently hands it
off to the next PE.

Parashar et al. evaluated a number of control idioms and
laid out these architectural benefits in their original work [19].
The focus was primarily above the microarchitectural level,
with mention of a two-stage pipeline not otherwise specified.
The original paper examined the scheduler, placing it at 2%
of PE area, but there was no other area or power break-
down or characterization. Subsequent work [32] mentions a
CACTI and Verilog-based power model, suggesting it closed
at 3.4 GHz in a unspecified commercial CMOS process, but
that was the extent of the commentary. To date there has
been little public study of the microarchitectural choices
and challenges of implementing a triggered PE. Such study
complements architectural ones, and, as this work shows,
has a substantial impact on the ultimate energy efficiency
performance that can be achieved.

Reducing the latency from when a PE receives a data token
to when it emits a result token is an intra-PE optimization.

Pipelining a Triggered Processing Element

However, in a spatial context where PEs operate together as
a pipeline, the throughput of the pipeline is limited by this
single-PE latency. Improving the PE microarchitecture can
thus have a system-level effect on the behavior of the entire
fabric.

2.2 A Generic, Integer ISA

We have designed a triggered, general-purpose, RISC-style,
integer ISA that supports a full complement of arithmetic
and logical operations. In our assembly, an instruction looks
like the following. Below, a merge sort worker looks for two
available input queue operands with the tags 0 and performs
an unsigned less than or equal to comparison on them, the
result of which is written into seventh predicate register.

when %p == XXXX0000 with %i0.0, %i3.0:
ult %p7, %i3, %i0; set ¥%p = ZZZZ0001;

The first line is the guard and the second line is the dat-
apath operation and predicate update. In this assembly, %p
refers to the predicate register, which is part of the trigger
condition and is optionally updatable by an assignment in
the datapath operation segment, as shown in this example.
Individual bits of the predicate can be pattern matched in
the trigger condition and selectively assigned to with don’t-
care/high-impedance notation. The indexed %r*, %i*, %o*
and %p* operands refer to general-purpose data registers,
input channels, output channels and predicate bits, respec-
tively. Tag information is referenced on input queues (in tag
matching) and output queues (in datapath operations) with
the . operator. In this snippet, the trigger is checking for
tag values of 0 on input queues %i0 and %i3. If any result is
enqueued on an output queue, the tag must also be specified
so downstream PEs can use the tag’s semantic information.

In our ISA, we have restricted operations to fairly low-
latency integer operations, with the lengthiest of these being
two-word product integer multiplication. Although the cur-
rent version of this architecture does not support floating
point instructions, the need to pipeline such functional units
would likely increase the need for techniques to fill deep trig-
gered pipelines like those we present in Section 5. We do,
however, offer a wide range of comparison operations and
logical operators intended primarily for predicate writes to
support expressive control flow. There is also a rich set of bit
manipulation instructions, such as clz and ctz (count lead-
ing/trailing zeros) which support software implementation of
routines such as integer division or floating point operations.
The ISA also offers loads and stores from a small, PE-local
scratchpad memory. Operations involving main memory are
currently carried out explicitly via the queues using read and
write ports as endpoints for designated channels as described
in prior work [1].

The architecture exposes a number of parameters which
govern the binary instruction encoding, listed in Table 1.
These include standard ones such as register count and word
size, as well as more unique ones such as the tag width
for queue data and the maximum number of input queues
that can be queried per trigger. Because our focus is on

98

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Parameter Description Value
NRegs Number of registers 8
NIQueues Number of input queues 4
NOQueues Number of output queues 4
MaxCheck Max queues checked per trigger 4
MaxDeq Max dequeues allowed / ins 2
NPreds Number of predicates 8
Word Word width 32
TagWidth Queue tag width 2
NIns Number of instructions per PE 16
NOpsx Number of operations 42
NSrcsx Number of source operands / ins 2
NDstsx Number of destinations / ins 1

Table 1: Architectural and microarchitectural param-
eters. All of them, except those marked with x, are
recognized by the toolchain described in Section 2.3.

program.s params.yaml

Assembler ParamGen
(Python) (Python)
Functional |
Simulator program.bin rams.sv
(Python) params.s
Userspace
LITibrarI% (C) Array of Triggered PEs
|nu>((c)r|ver (SystemVerilog)
on ARM Core on FPGA
Zynq Board

Figure 1: The toolchain is centered around a param-
eters file which can completely specify the target ar-
chitecture and underlying microarchitecture to build
a fully functional hardware/software system.

the microarchitecture, we have fixed all of the architectural
parameters as listed in the table: a 32-bit data word size, 8
predicate registers, 8 data registers, 4 input channels, 4 output
channels, a maximum of two input channel tag conditions
per trigger, and 16 instructions per PE.

Table 2 describes each instruction field and its width, both
in general and specifically as results from the parameter
assignment in Table 1. These binary fields can be loosely
divided between the trigger and datapath segment of the
instruction.

Fields such as PredM ask, which encode the requisite on-
set and off-set of predicate register state necessary for an
instruction to fire, clearly belong to the guard of the atomic
action. While other fields like reference tags for comparison on
input channels are also only needed for instruction scheduling,
some others do not fit squarely into one half of the instruction
or the other and must be available to the scheduler at all
times.

For example, the destination information (DstTypes and
DstIDs) is required because if an operation is to write to an
output queue, the instruction may trigger only if that queue
has space. For instructions that do not enqueue information,

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

T. Repetti et al.

Field Description Width
Val Valid bit 1
PredMask Required on-set and off-set of predicates for trigger 2 X NPreds = 16
Queuelndices Input queues to check MaxzCheck X [logag(NIQueues +1)] =6
NotTags Which queues to check for absence of given tag MaxCheck = 2
TagVals Vector of tags to seek on input queues MaxCheck X TagWidth = 4
Op Opcode [loga(NOps)] =6
SrcTypes Source types (reg,input queue,immediate, or none) NSres X2 =4
SrcIDs Source indices NSres x [logg(max(Nregs, NIQueues))] = 6
DstTypes Destination types (register, output queue, or predicate) NDsts X 2 =2
DstIDs Destination indices NDsts x [logg(max(NRegs, NOQueues, NPreds)) = 3
OutTag Tag with which to eneuque the result = TagWidth = 2
IQueueDegq Input queues to dequeue MazDeq X [logy(NIQueues +1)] =6
PredUpdate Masks of which predicates to force high or low 2 X NPreds = 16
Imm Immediate value WordWidth = 32

Table 2: Instruction fields for our ISA encoding. The sizing of many fields in the machine code
layout is dependent on the parametrization chosen in Table 1. Unsynthesized padding bits to round

memory-mapped width are omitted.

these fields specify the destination data or predicate register
are also required by the datapath. These two fields are then
important to both the trigger resolution front-end of the
processor and the datapath operation. A consequence of the
parallel nature of trigger resolution is the need for all trigger
fields to be exposed combinationally to the scheduler in order
execution at a rate of one instruction per cycle, which has area
and energy ramifications for instruction memory discussed
at length in Section 4 and Section 5.4.

Another important component of the instruction is the
PredUpdate field. These two bitvectors, with one entry per
predicate, indicate which predicate bits to force high or low
to update the predicate state. Updating the predicate state
rapidly is important to keep the PE making forward progress.
If any datapath instruction has a predicate as a destination,
we assume that this predicate update mask will not conflict
with it. This is guaranteed by the assembler provided in our
toolchain. Since the predicate update is roughly equivalent to
the default PC = PC + 4 update in an equivalent traditional
machine, this field must update architectural state within
a cycle of the instruction trigger in order to maintain an
upperbound CPI of one.

We have opted to support full word-length immediate
fields. Due to the small, fixed handful of instructions each PE
can hold because of instruction storage medium constraints
each instruction represents a scarce resource, and wasting
two slots, and two cycles, to fill a register with a 32-bit
physical address comprised of two ORed 16-bit immediates
was undesirable. Moreover, the immediate is one of the few
fields of the instruction that wholly belongs to the datapath,
and therefore can reside in inexpensive RAM-based storage
that is indexed after the triggers have been resolved.

2.3 Public Release

To foster research in this area, we have released a software
toolchain for this instruction set, workloads, and the single-
cycle and pipelined microarchitectures (Section 4 and Sec-
tion 5). All of these will be available in a public repository
at http://github.com/arcade-lab/tia-infrastructure.

99

Toolchain. The software toolchain is depicted in Figure 1.
At its root is a single parameter file, recognized by the as-
sembler, functional simulator, userspace library, and used to
parametrize the microarchitecture itself. This flow recognizes
all of the parameters listed in Table 1 with the exception of
the starred ones. The assembler produces a binary that can
be executed on either the functional simulator or an RTL pro-
totype. The RTL prototypes — single-cycle PEs described in
Section 4 and pipelined PEs as described in Section 5 imple-
mented in SystemVerilog — are arranged in small-scale spatial
arrays (maximum 4 X 4 to fit on a Zynq SoC-FPGA[11])
accompanied by a Linux-based driver and userspace library
that accepts the same ISA parameter file as the assembler.
The parameter file also supports a handful of on/off settings,
making it easy to selectively enable features, such as wide
multiplication and scratchpad use.

The userspace library is responsible for interacting with the
Linux driver through a memory-mapped interface, through
which it can manipulate control registers, program instruc-
tion memories, preload scratchpad memories, and read state
from per-PE debug monitors and performance counters. In
addition, it is responsible for performing all data I/O and
setting up data buffers for program execution.

For simplicity of this interface we have padded each 106-bit
instruction to a round 128 bits. This padding is never stored
in the write-only instruction memory and exists solely to
simplify manipulation of the instructions themselves by the
host processor.

Workloads. The release includes a suite of hand written
and optimized assembly programs designed to exhibit a range
of behaviors within the PE. These programs — three of them
running on a single PE, seven running on a two-by-two PE
array — are summarized in Table 3. Some, such as the binary
search tree are memory-access intensive, while others like the
dot product computation are compute heavy. Others such
as the merge worker and string search are branchy in data-
dependent ways. Because we intentionally omitted a division
instruction from the ISA, we have included a software division
algorithm among the benchmarks, indicative of the software

Pipelining a Triggered Processing Element

support for otherwise omitted operations in a RISC-style
ISA.

3 METHODOLOGY

The following sections describe and characterize the perfor-
mance, area, and power consumption of a number of imple-
mentations of the ISA described in Section 2.2.

Using the toolchain described in Figure 1 and a Zyngq
SoC-FPGA test board, we gather event and cycle counts
from performance counters embedded in each PE. All of
the data in these runs is supplied from on-chip memory,
which on this system has a load latency of four cycles. For
multi-PE programs, performance counters are taken from the
designated “worker” PE (described in the Table 3) which
performs the representative part of the workload.

To assess the area, power, and clock frequency of each pro-
cessing element, we synthesized netlists, minus performance
counters, using Synopsys Design Compiler (2013.12-SP1) and
TSMC 65 nm general-purpose CMOS standard cells. We used
moderate synthesis optimization and allowed for retiming
only within the multi-stage ALU and multiplier functional
units in order to optimally pipeline arithmetic. We also al-
lowed for clock-gating throughout the design since this is a
simple dynamic power optimization that would be expected
in an end-product. We characterized a subset of cells within
the nominal 1.0 V standard cell library at a variety of sup-
ply voltages in the range of 0.4V to 1.0V to explore the
interaction of pipelining and Vpp scaling.

For the design space exploration, we characterized this
subset of the standard Vr standard cells at 0.6V, 0.7V,
0.8V, 0.9V, and 1.0V, and target frequencies of 100 MHz to
1.5 GHz at 100 MHz granularity. We also selectively refined
this frequency granularity in near-threshold regimes to a
granularity of 50 MHz up through 500 MHz. For non-standard
threshold voltage standard cells in the low- and high-Vr
libraries, we performed characterization at 0.4V, 0.6 V, 0.8V,
1.0V, and again used selective refinement in the near- and
subthreshold voltage regimes. Here we additionally refined the
subthreshold high Vi target frequency sweeps in increments of
10 MHz through 100 MHz. Eight pipeline microarchitectures
with and without the two optional pipeline optimizations
discussed in Section 5.2 and Section 5.3 came to a total of
32 different microarchitectures. The resulting design space
spans over 4,000 different design points.

For each of them, we extracted gate-level activity factors
from a run of the binary search tree program, whose behavior
we compared against known FPGA performance figures for
automated post-synthesis validation. Among the single-PE
workloads, binary search tree had the most balanced combi-
nation of I/O channel use, computation and memory access
delay. The resulting execution ranged from approximately
90,000 to 160,000 cycles depending on the microarchitecture
being analyzed. The resulting fully annotated netlist-level
VCD was used as a dynamic activity input into the Synop-
sys PrimeTime (2013.12-SP1) fine-grain power and timing
modeling software. We report pre-extraction results, but use

100

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

a uniform wire-load model of 2 fF for all local nets. Due to
the size of the design space, it was impractical to perform
place and route on all the designs, which is why we opted
for this uniform capacitive wire load approximation, but we
have also successfully pushed several of our designs through
automatic place and route to demonstrate feasibility.

For the other microbenchmarks, dynamic instruction counts
vary from 20,003 for dot_product to 411,540 for gcd. The to-
tal number of cycles executed for any one benchmark on any
given microarchitecture maxes out at approximately 700,000
cycles.

4 SINGLE-CYCLE BASELINE

Figure 2 depicts our single-cycle baseline microarchitecture,
which serves as a qualitative baseline on which we build
the pipelined implementations. While the primary design
objective was simplicity, it includes a handful of features
aimed at efficiency. The front end of the processor centers
around the scheduler, which as described in the original
triggered architecture paper [19], is responsible for comparing
the instruction triggers with the current predicate and queue
state, to determine which instructions are eligible to execute.
A priority encoder selects one, which is then fetched from
instruction memory and executed on a fairly standard RISC
datapath. Predicate updates from the triggered instruction
are applied, with potentially additional conditional predicate
updates originating from ALU comparison or logic operations.

As mentioned in our discussion of binary instruction encod-
ing in Section 2.2, a peculiar aspect of triggered-instruction-
based control is the need for the portion of the instruction
that includes trigger information to be accessed in parallel.
This precludes all synchronous RAM-based storage media
for storing trigger information, making it possible for the
instruction storage to become large and power hungry rela-
tive to other components. Since some instruction fields are
not required by the Scheduler (e.g., Imm), it is possible to
store those in a traditional indexed store such as SRAM, so
long as the design is pipelined such that the stage in which
instructions are triggered is separate from the stage in which
those fields are decoded. We have validated that this mixed
storage medium microarchitecture is possible on an FPGA
prototype. In our preliminary CACTI-based [29] analysis
of mixed register/latch-SRAM, we find that we can reduce
instruction memory area and power usage by 16% and 24%,
respectively, over register-only instruction memory and by
9% and 19%, respectively, over latch-only instruction memory.
Because of the restrictions such a design would impose on
the pipelines we wish to study, however, we have opted to
forgo SRAM and place the entire instruction in the “trigger’
storage.

Using clock-gated registers, the instruction storage ac-
counts for 25% of PE area and 41% of PE power. The high
area and power use are at least partially attributable to sized-
up instruction register transistors, which are both timing
critical and relatively high-fan-out. Latches reduce the area
by just over 30% and power by 75% thanks to the removal of

i

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

A single PE accesses memory to traverse a binary search tree with nodes generated with random numbers to increase

bst branch (predicate datapath write) entropy. The PE then stores the Boolean result of this search in the same data memory.
cd A single PE reads two numbers for which to calculate the GCD (chosen intentionally for long runtime), and performs a
g register-register operation workload to calculate the GCD before storing it back to memory.
mean A single PE reads an array of numbers from memory and accumulates them before calculating their average and storing
it back to memory.
arg_nax One PE streams an array of integers from memory to another which determines the index of the highest of these values.

dot_product

filter

merge

stream

string_search

udiv

The second PE (the worker) then stores the result back to data memory.

Two PEs stream two integer arrays to a third PE (the worker) which calculates the dot product. Upon receiving
end-of-program tags from both stream PEs, the multiply-accumulate PE saves its accumulator to memory before halting.

One PE streams a list of integers to a second which determines whether they are above a threshold and in turn emits a
zero of one accordingly to a third PE. This third PE (the worker) uses this Boolean input stream to determine whether
to save the corresponding value from a second stream of integers to memory.

Simulated the conditions for a PE in a high-radix spatial merge sort using a 2x2 array of PEs. Two PEs stream sorted
lists to a merge PE (the worker), which must produce a sorted list combining them.

One PE (the worker) generates a stream of data to store (increasing integers from zero to a maximum value) while
a second produces an identical stream which is used as store indices. The goal of the benchmark is to determine the
maximum throughput for a sequential loop within a PE program.

One PE reads four-byte words from memory and forwards them to a second PE, which breaks these words into bytes.

This second PE forwards those bytes to a third PE (the worker) which interprets each as an ASCII character. This third
string matching PE scans the stream for the string "MICRO" using a small DFA hard-coded in TI assembly. This PE emits
zeros in all states except the match state in which it emits a one, resulting in an output array in memory which gives the
indices of these occurrences of "MICRO".

This benchmark implements an unsigned integer division TI assembly macro in a single PE (the worker) which is then
fed numerators and denominators by another PE streaming them from memory before storing the resulting quotients in
memory. The divider PE saves these quotients back to memory to validate the result.

T. Repetti et al.

Table 3: PE-centric benchmarks designed to display a range of anticipated behaviors within a PE. Publicly re-

leased. All reported performance counter figures from multi-PE workloads come from the designated “worker

PE.

100%

Figure 2: Block diagram of our single-cycle triggered PE. In
order for programs to make forward progress using this con-
trol mechanism, predicate updates encoded in PredMask, any
input channel dequeues in IQueueDeq and datapath predicate
writes must be atomic.

clock tree capacitance and smaller cells. In the standard cell
technology we use, however, we found that latches increased
the critical path of the trigger resolver and the rate of failure
in our gate-level post-synthesis validation. Thus, we settled

Pred. Unit
(Back End) B |ns. Mem
— Instr. - w RO1 80% H Scheduler
—Mem. +—] B | W Queues
e RegFile Z i
it g P ¥ RegFile
RD2 60%
Schedul = [[— e
cheauler == !
=2 Eé Imm [
op 40%
1 2 |
% Pred. DstTypes, DstlDs ‘ 2 0%
L Update
35 : !
g Unit @t
o N (y L S -
S Queues 0% .
@ o
(Front End) < E

Figure 3: The baseline, single-
cycle PE implementation consumes
64.435 pm? and 1.95 mW. The backend
dominates area while the distribu-
tion is evenly split in terms of power.

99

on the clock-gated register-based instruction memory for both
the baseline and all upcoming pipelined microarchitectures.

We use a detailed power and timing model through Prime-
Time for sequential components and do not have an outside

SRAM model for a scratchpad memory. Our benchmarks also

101

Pipelining a Triggered Processing Element

do not use local scratchpad memory, and so we omitted it
from the single-cycle and later pipelined designs, although
this feature is also functional in the FPGA prototype.

Area is dominated by ALU followed by instruction mem-
ory. Power is mostly proportionate to area, excepting the
instruction memory which has relatively higher power and
the ALU relatively lower power. This is at least partially
due to the bst workload not exercising many of the larger
functional components of the ALU like multipliers, but also
due to the capacitance of the clock tree of the large sequential
instruction memory. Our scheduler accounts for 6% area and
5% power, slightly higher than the 2% area consumption
noted in Parashar’s paper.

If you consider the queues, which account for 18% area
and 22% power, to be neutral and break the remaining com-
ponents down into front end (Predicate Unit, Instruction
Memory, Scheduler) and back end (RegFile and ALU), the
area split is 32% front v. 46% back end. For power this is
reversed and slightly more skewed at 48% front end and 23%
back end. This is a side effect of the simplicity of our datapath
and instruction set. If it included more complicated opera-
tions and functional units, the relative power consumption of
the front end would shrink. And the power would skew even
further towards the backend if the alternative instruction
stores described above were used and scratchpad memories
were included.

5 PIPELINED
MICROARCHITECTURE

The benefits to pipelining in terms of instruction-level paral-
lelism, timing closure and increased power efficiency through
voltage scaling are well understood and thus desirable in
most microarchitectures. It is also well-known that pipelines
present a wide variety of hazards necessitating control logic
that can help mitigate them. Here we analyze the challenges
that arise in triggered pipelines (Section 5.1), present two haz-
ard mitigation strategies, predicate prediction (Section 5.2)
and queue status accounting (Section 5.3), and evaluate them
in the context of seven pipelines operating at a range of supply
voltages (Section 5.4).

5.1

A pipelined, triggered microarchitecture is susceptible to
the same data hazards as a conventional pipeline, be they
register operand dependences or dependences across stages of
a pipelined functional unit. On top of this, triggered control
introduces unconventional control hazards. With a PC, a
processor must compute the next PC in order to fetch and
begin executing the next instruction. The next PC is either
the result of a predictable update function (e.g., PC = PC
+ 4) or a more complicated branch condition and target
resolution calculation. By contrast, in a triggered architecture,
program control advances via updates to the predicate and
queue states.

To trigger the next instruction, one has two options: wait
for the preceding instruction to complete its updates to the

Control Challenges

102

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

predicate and queue state, or speculate on the upcoming
predicate and queue state and trigger a speculative instruc-
tion. The deeper the pipeline, the more critical it becomes to
resolve or predict the upcoming states to keep the pipeline
full. Interestingly, the dynamic rate of instructions that write
to predicates in our workloads is 20%, almost exactly the
rate of dynamic branches found in standard single-threaded
workloads such as SPEC. In the next two sections, we present
two techniques to anticipate the upcoming predicate and
queue state to more quickly identify and begin executing the
next instruction.

5.2 Predicate Prediction

The first technique is a speculative predicate unit, that is a
drop in replacement for “Predicate Update Unit” depicted in
Figure 2. The speculative version contains a two-bit saturat-
ing predictor for each predicate. For each instruction with a
predicate destination, the speculative unit offers a predicted
predicate value for that bit. When it does so, it also saves
the original predicate state in the event of misspeculation
and rollback.

Our scheme does not currently allow nested speculation,
so predictions are made only if the system is not already
speculating, or if the current speculation has been confirmed
in the current cycle. During speculation, we restrict the in-
structions that can be issued. As in traditional processors,
any instructions with side-effects prior to retirement cannot
be issued speculatively as they could permanently alter archi-
tectural state. For this reason, dequeues are also forbidden
since the dequeue of an input queue will take effect early dur-
ing the execution of the associated instruction. Both of these
restrictions lift, however, as soon as successful speculation is
confirmed.

In the event of misspeculation, the pipeline is flushed and
the predicate state visible outside of the speculative unit is
returned to the fallback state. Because we have forbidden
speculative dequeue operations, this simple predicate rollback
is sufficient to restore the pre-speculation architectural state.

The term “predicate prediction” has been used in the
context of out-of-order superscalar processors, describing a
technique to improve the performance of cmov-like instruc-
tions [10]. However, in that context, predicated instructions
are always fetched and issued, whereas the predicates in this
context are central to the control mechanism, determining
every instruction’s execution eligibility.

5.3 Effective Queue Status

Queue hazards arise when an in-flight instruction might alter
the state of an input or output queue, thus preventing the
scheduler from identifying and launching the next instruction.
Because queue state has a direct impact on both control flow
and data movement, queue hazards straddle the traditional
control/data hazard dichotomy. They resemble control haz-
ards in that they effect instruction execution eligibility and
data hazards in that the processor must prevent dequeues
from empty inputs or enqueues to full outputs.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Such hazards can occur on any spatial architecture with
operand queues, whether they have triggered control, PC-
based control, or otherwise. Some designs such as MIT RAW
have dealt with the queues going to and from the router
in a binary full/empty fashion, conservatively treating all
channels with pending enqueues as full or pending dequeues
as empty [6, 30, 31]. Others like WaveScalar have padded
the output queues with as many extra slots as the pipeline
is deep, thereby guaranteeing queue capacity for in-flight
instructions, calling this the “reject buffer” [23, 28].

We argue that such hazards may be dealt with more ef-
fectively and efficiently by pipeline register inspection and
augmenting the instruction dispatch with some simple ac-
counting. Accurate input queue status can be determined
by exposing the current queue occupancy and calculating
whether this value less the number of in-flight dequeues ex-
ceeds zero. Assuming that dequeues take effect within the
first N pipe stages, this requires only a log,(IN)-bit adder. In
all of the pipelines we examine here IV never exceeds 2 so this
adder is small indeed. When queue tags are also scheduler
inputs, it is further necessary to peek at the tag not just on
the head of the input queue, but deeper in, again, according
to the number of in-flight dequeues. More generally the first
N tags on the input queue must be exposed, which for our
pipelines is just the “head” and “neck”.

Accurate output queues can be computed similarly and
more simply, because the tag information of in-flight enqueues
is irrelevant for scheduling. We still compute whether the
current output queue occupancy, plus the number of in-
flight enqueues for that queue, will fill the queue. For a
pipeline of depth D, serving N output queues, this will require
N x log,(D)-bit adders plus a log,(D)-bit comparator. In
contrast, padding the output queues, would require D x N
additional queue entries, each one word wide plus tags.

Strictly speaking, this output accounting is still somewhat
conservative as neighboring processing elements may dequeue
from an output queue before the in-flight enqueues land. Even
so, it is less conservative than the alternate approaches. More-
over, addressing the remaining conservative margin requires
cross-PE coordination — between producer and consumer
scheduler — which is an anathema in spatial design and would
scale terribly as each scheduler must now coordinate with as
many neighboring schedulers as there are output queues.

An efficient interface to determine the state of input and
output queues is especially important here because of how
spatial architectures encourage producer-consumer relation-
ships between PEs. In the following section, our evaluation
finds that the benefit of effective queue status accounting is
substantial, even on our small-scale spatial workloads.

5.4 Evaluation

We have implemented these optimizations on seven different
pipelines, ranging from 2 - 4 stages deep. Given the simplicity
of the operations in our ISA, we found little value in deeper
pipelines. Moreover, the critical path of these designs, ranging

103

T. Repetti et al.

from 50 to 60 fan-out of 4 inverter delays (FO4) is in line
with modern standards [12].

To describe the various pipelines, we have divided the work
of a processing element into three conceptual stages:

e trigger (T) selects and fetches an instruction from
memory,

e decode (D) retrieves any operands from the regis-
ter files and input queues and performs the necessary
operand forwarding, and

e execute (X), optionally split into X1 and X2, per-
forms any arithmetic or logical operations and writes
results to the register file or output queues.

We consider all possible pipelines that result from introducing
pipeline registers between these stages: T|D|X, T|DX, etc.
Including the single-cycle design, which we now refer to as
TDX, this results in eight distinct microarchitectures.

Dequeueing from the inputs in the same cycle as the trigger
resolution proved to be a long critical path, so we moved the
dequeue operation to decode. In designs where the T and D
stages are coalesced (TD*), this makes no difference, but it
also opens up the possibility that they be split (T|D*). When
they are split, and when the queue status optimization from
Section 5.3 is enabled, the scheduler will inspect both the
“head” and “neck” of the input queues.

Area and Power Overheads. The speculative predicate unit
and effective queue status accounting are likely to incur their
largest area and power overheads on deep pipelines. For
these calculations we use the deepest pipeline (T|D|X1|X2)
synthesized at nominal supply voltage using a standard V;
and a conservative target frequency of 500 MHz. While the
pipeline can operate at higher frequency, the push for tim-
ing will inflate the resulting design. This baseline consumes
63991.4pm? and 2.852mW. Adding a speculative predicate
unit increases the area 0.5% to 64278.4m? and the power
by 7% to 3.048 mW. Adding the queue status accounting in-
creases the baseline 2% to 64 131.8 pm? with no measurable
difference in power consumption. For comparison, padding the
output queues instead would have increased total device area
13% to 72439.4 pm? and total power draw 12% to 3.194 mW.
When combined, our two features increase the total PE area
1.4% to 64895.4um? and total power consumption 8% to
3.077mW.

As for the cost of pipelining itself, iso-frequency and iso-
Vbp the power increases linearly with the addition of each
pipeline register. Again at nominal voltage in a standard V;
standard cell technology at 500 MHz, we see an addition of
0.301 mW per pipeline register added. Due to the transistors
sizing-up to meet timing in unpipelined (or under-pipelined)
designs, any effect from the pipeline registers on area is
negligible and lost in the noise.

Timing Overhead. We found that the simple circuitry to
calculate effective queue status had no impact on timing
closure. On the other hand, predicate speculation did slightly
increase trigger stage delay. In a four-stage T|D|X1|X2 design
at nominal voltage that closed at 1184 MHz without any

Pipelining a Triggered Processing Element

0,
100% B predicate Write Frequency
M Prediction Accuracy
80%
60%
40%
20%

0%

SR F 0 QS LKL e & (4
&SI TF T & 8
& & 2 Q &S &
) &7 9 Q‘ /§

>’ &
& il
B S

Figure 4: Datapath predicate write frequency and
prediction accuracy by benchmark workload. Note
that the worker PE in dot_product does not rely on
predicates for control flow, just the semantic infor-
mation encoded in operand tags.

speculation, the critical path was the trigger stage with
a delay of 53.6 FO4. Once speculation was enabled, this
increased to 64.3 FOA4.

This suggests the trigger stage largely sets the pipeline
balance for any pipeline breakdown of this ISA, placing the
balanced pipeline delay in the 50-60 FO4 range. This number
is high relative to the optimal delays identified in the early
2000s ranging from 6 - 8 FO4 [17] to 18 FO4 [27]. However,
CPUDB indicates a considerable upswing in average FO4
delay since then, with 2010-era delays ranging from 25 to 85
FO4 with an average of approximately 45 FO4 [12].

One consequence of this is that for simple integer functional
units, as we shall see in our upcoming discussion of Pareto
optimal designs, moderately deep pipelines may be sufficient
in modern CMOS technology. This is a result that our early
exploration of timing breakdown and pipeline balance using
an FPGA failed to predict.

Predicate Prediction Accuracy. With the exception of the
dot_product benchmark, all of our test programs have dat-
apath predicate writes that activate the predictor. filter
and merge both have data dependent control flow based on
high-entropy input data generated prior to the test with a
PRNG. These unpredictable control flow patterns represent
our worst-case branch predictor accuracy of around 50%, seen
in Figure 4. On the other hand, others such as gcd, stream,
and mean all feature long-running and thus predictable loops
as their main control structure and represent the best-case
scenario of near perfect accuracy.

Still other benchmarks such as bst and udiv have unpre-
dictable branches nested within predictable loop-like branches.
In the case of bst, the predictable loop is the while (next

104

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

B Retired Ins. ® Quashed Ins.
3 B Predicate Haz. Data Haz.
B Forbidden Ins. ™ No Triggered Ins.
2
o
o
1
0
= Hd++ HA++ —H++ A+ + —A++ H++ A+ +
U UYUUY QgYU —YU QgUU —UU —UVUV —TUTO
X X £+ — £ U +£ == + U + O + O +
BE P X O X 0 X PO X P g L P
s = = =
e N N >
N

Figure 5: CPI stacks of various pipelined microar-
chitectures with the predicate prediction (+P) and
effective queue status (+Q) pipeline optimizations se-
lectively enabled. The stacks represent the average
behavior over the ten workloads.

I= NULL) {} loop which is by definition always taken until
the program exits with a result, and the unpredictable predi-
cate write is from the result of the less-than comparison that
determines which child to dereference. Similarly, in udiv the
predictable predicate write is an iteration shifting through
all the bits of the dividend, while the less predictable branch
is whether the bit in question is one or zero.

A unique aspect of this scheme is that when a program
assigns certain semantic significance to particular predicates,
writing to them only to represent certain binary decisions, this
bank of predictors becomes a per-branch predictor without
the traditional overhead of indexing a bank of predictors via
the instruction pointer. Our benchmarks were hand written
with an awareness of this and generally assign a unique
predicate for each different datapath predicate write.

Impact on CPI. Turning now to the microarchitectural
dynamics of the pipelines, Figure 5 plots the CPI for each of
the seven designs with no optimization, with predicate pre-
diction turned on (+P), and with both predicate prediction
and queue accounting turned on (+P+Q).

In the base pipelines, we observe that, rather intuitively,
the rate of predicate hazards increases as pipeline depth
increases. In fact, the impact of predicate hazards is the same
for all pipelines of a specific depth. Moreover, their impact
is superlinear in the length of the pipe, adding 0.18 CPI at
2-stage pipes, 0.24 CPI at 3-stages, and 0.27 at 4-stages.

When the speculative predicate unit is introduced, the
predicate hazards are eliminated almost entirely, with vir-
tually no quashed instructions. Considering the accuracies
we found in Figure 4 for the overwhelming majority of the
benchmarks averaged in the CPI stacks, this is unsurprising.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

However, with speculative execution, we also see an uptick
in forbidden instructions, namely those with pre-retirement
side effects described in Section 5.2 that are forbidden dur-
ing speculation. In this situation, the scheduler recognizes
them as ready to execute, but they are prevented from issue
because the current speculation has not yet been confirmed.
As with the predicate hazards, we observe that the rate of
forbidden instructions increases with pipeline depth and the
correspondingly lengthened speculative windows. This is ex-
acerbated by the fact that many of our benchmarks feature
nested loop control and dequeues embedded within loops.

When the queue status accounting is added, we see a
drop in cycles with no triggered instruction. This is the
expected effect of a mechanism that is intended to make the
scheduler trigger instructions less conservatively. Interestingly
however, the cycles with no triggered instructions drops to a
pipeline-depth-agnostic constant equal to that found in the
single-cycle design. Whereas this component of CPI had been
increasing with pipeline depth, the queue accounting erases
this unpleasant side effect of pipelining entirely.

Energy Delay Analysis. To achieve optimal results in the
face of energy-delay tradeoffs, we explored supply voltage as
a first-class design parameter. As opposed to post-synthesis
exploration looking at a design’s behavior under a DVFS
scheme, here we can take advantage of having a specific
target frequency and voltage in mind when pushing our
design through the VLSI flow, which results in optimally
sized cells for the intended use case.

We scaled voltage and frequency considerably, and further
considered the tradeoff between leakage power dissipation
and gate switching delay that can be tuned by selecting
an appropriate threshold voltage for the underlying circuit
technology. Many of the optimal points we see on the tradeoff
curve in Figure 6 can only be realized through this form
of exploration conducted at this scale. As expected, the
upper-end of the performance spectrum is dominated by
low Vr standard-cell designs, the middle by standard Vi,
and the low-power and ultra-low-power domains by high Vr
designs. Despite all of this, the energy-delay span of a single
architectural design point was remarkably broad, stretching
71x in energy and 225x in delay.

It is over this range that we see the benefits of our pro-
posed pipeline optimizations. As indicated in Figure 7, any
negative effects on timing closure brought about by using
the speculative approach are largely erased by improvements
to CPIL. Near the balanced region closest to the origin of the
Pareto curve, the addition of both the effective queue status
accounting and predicate speculation improves the frontier
by 20-25% in both energy and delay.

The benefit of combining speculation with queue account-
ing is not uniform, however. Though it has a particularly
strong benefit to pipelined designs and dominates virtually
all other pipelines in the balanced to moderately low-power
regions of the frontier, towards the high performance extreme
of the Pareto set, it appears that determining effective queue
status alone is optimal. It may be that in those conditions,

105

T. Repetti et al.

the critical path overhead incurred by speculating in the
trigger stage is not worth the cost of losing on timing closure
in high performance designs. That said, the two microarchi-
tectural knobs offer clear benefits — together in ultra low
power and moderate cases and in queue status alone in high
performance.

Pareto Optimal Designs. Figure 8 details the designs on
the Pareto frontier. Through many of the low power regimes
into the energy-delay balanced region of the frontier, the
single-cycle TDX baseline remains surprisingly competitive
due at least partially to its superior CPI. The curve traced out
by T|DX designs with prediction and queue status accounting
enabled, however, narrowly dominates most of them.

Another surprising observation is that the exact same mi-
croarchitecture provides the best global performance and
best absolute energy efficiency. At the high performance ex-
treme, a two stage pipeline with a split-stage ALU, TDX1|X2,
synthesized in a low Vr standard cell library using the effec-
tive channel status optimization and running at 1157 MHz
achieves the highest throughput with an instruction latency
of 1.37ns, but does so at a cost of 21.42 pJ/instruction. At
the low-power extreme this exact same microarchitecture syn-
thesized in a high V7 standard cell library also proves glob-
ally optimal achieving 0.89 pJ/instruction. It seems that this
correlation between high performance and low-power microar-
chitectures is not without precedent, though, as it has been
reported in other literature that high performance designs can
counter-intuitively share characteristics with ultra-low-power
microarchitectures [2].

Only a single three-stage pipeline appears on the fron-
tier, here as the second most performant design. It in fact
has nearly identical throughput compared to the highest
performing design, with an instruction latency of 1.43ns,
but consumes nearly half the energy per instruction of the
highest-performance design with 11.91 pJ/instruction. This
T|DX1|X2 pipeline also uses both of the proposed optimiza-
tions with prediction and queue status accounting enabled
in order to achieve this result.

Power Density. Power density is of central importance in
the design of massively parallel architectures. The density of
power dissipation and thus the thermal design power (TDP)
of GPUs is one of the primary factors that keeps their clock
frequencies often twice as slow as CPUs in comparable tech-
nologies. When selecting a processing element design, power
density will likely be one factor that limits the scalability of
the spatial architecture.

Our Pareto-optimal designs show remarkably little variance
in area, but as discussed above show considerable variance
in power characteristics. With this in mind, it is possible
to see where these designs fit in the context of conventional
mainstream architectures like CPUs and GPUs in terms of
their power density.

In the 65nm era, CPUDB shows a mean power density
of approximately 500 mW /mm? for CPUs with a maximum
of 1000mW /mm? and a minimum of 50 mW /mm? [12]. At

Pipelining a Triggered Processing Element

100 r
r -—1.0V
[—0.9V
+ —0.8V
- —0.7V
0.6V
10 d 0.4V
I
‘G L \
EEE A ©
I
L T\
—'Q_ -~
1t
0.1
1 10 100 1000

ns/Instruction

Figure 6: Frontiers for each supply voltage considered
within the design space.

the same node, GPUs had a maximum power density of
approximately 300 mW/mm? [7].

All of the PEs on the Pareto frontier fall below these
CPU and GPU densities with the highest power density
design consuming 167.6 mW/mm?, although that is likely to
increase substantially post-extraction, despite our uniform
wire load model. It would also likely increase had the test
workload post synthesis been one that used more power-
hungry arithmetic like multiplication instead of primarily
comparisons and additions.

6 LIMITATIONS AND EXTENSIONS

Since this is a study of pipelined microarchitectures, it would
have been interesting to add functional units like floating
point that demand deeper pipelines, as much of our timing
analysis indicates that for simple integer functional units like
the one examined here, moderate pipelines in the range of two
to three stages are optimal. An analysis of such a system, we
believe, may have also exposed limitations in our speculation
scheme. The fact that we do not support nested speculation
— which already showed evidence of hurting CPI in Figure 5
— would have likely hurt even more in deeper pipelines with
more instructions forbidden from entering the pipeline due
to the nesting restriction. Our initial exploration suggests
that it would not be terribly expensive to support nested
speculation, and we would like to examine the effect of this
addition on decreasing the number of forbidden instructions
in deep pipelines.

This study focused squarely on intra-PE microarchitecture
and therefore did not consider the effect of memory access in

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

5
| None
—+P
4
_+Q
\ —+P+Q
g3 \
g \}
g W
i=
~
+ \
1
0

0 2 4 6 8 10
ns/Instruction

Figure 7: The benefit of adding predicate prediction
(+P) and queue status accounting (4+Q) in balanced
designs at the Pareto frontier of the main energy
delay tradeoff.

10000

g «eeae-Vdd .0 MHz
F -«#--ns / instruction --®--pJ / instruction
i —e—mW —8—mm2
. —a— mW/mm2 —eo—ED
1000 E '“'""-.....--.......
F R
F .o
L o..., o..
N "l.,...
\ .
100 E A e .
F K J
10
1
0.1 E
F .
0.01
o o b3 > = b3 =
9999993989383 98F3¢
- N S S - o - e e - N - N - LN
L FRAF = + + + + + <
jury I N > = B3 = B3 jury
LXYXFS 5 & & & ¥
2gPg [= = (= [= = a8
o [a)
= =
=

Figure 8: Parametric analysis of Pareto optimal de-
signs.

106

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

great detail. Since the FPGA testbed and VLSI testbench
with fixed memory access latency via an on-chip local memory
effectively emulates perfect caching, the interplay of a spatial
architecture that can benefit from memory-level parallelism
and a memory hierarchy was not considered. It remains to be
seen if performing loads and stores over the mesh interconnect
as in prior art [1] is optimal. We plan a future version of the
ISA and system, not considered here, that will enable main
memory access through per-PE load-store queues using the
decoupled load access paradigm [18], as opposed to generating
interconnect traffic. The effects of this addition on the PE
pipelines are yet unknown.

As mentioned in Section 4, we did not use an SRAM library
in our dynamic power analysis, and therefore have omitted
the intended feature of per-PE scratchpad memories. The
remaining control and datapath structures were all small
and would have been placed in registers even had we used
SRAMs elsewhere. An extended version of this work would
include an analysis of using synchronous indexed storage for
immediates or other datapath portions of the instructions.
While it is unclear what the performance impact would be,
our hypothesis is that area and power would increase due to
the new SRAM scratchpad, but that power density would
decrease overall due to its relatively lower activity level.

Lastly, our study of area and power shows that instruction
memory is significant in the overall design budgeting, and
not only can this be addressed through the storage used for
the instruction memory itself but also by better encoding
techniques. We believe that it should be possible to arrive
at more efficient trigger and instruction encodings at the
architectural level, alleviating some of the area and power
pressure imposed by the unique parallel instruction memory
access paradigm in the architecture.

7 RELATED WORK

General purpose programmable spatial architectures have
been an area of active research for decades. Only a subset of
these, however, have processing elements with sufficient exe-
cution control to fall into the category of locally autonomous
spatial architectures. The MIT RAW architecture takes an
in-order MIPS pipeline and extends it input and output reg-
ister queues and a set of programmable routers in an on-chip
network for spatial coordination between autonomous pro-
cessing elements, and the microarchitectural implications of
a MIPS pipeline in a spatial context is explored [30, 31]. It
however uses a single Boolean signal for backpressure propa-
gation on output ports and does not inspect its pipeline to
determine effective queue occupancy. As a PC-based system
with operand queues, it is one such architecture where our
queue management approach would also apply.

The UCD AsAP DSP system [4] and more recent Kilo-
Core chip [5] also are both examples of large-scale PC-based
spatial architectures. Due to the deep SRAM I/O queues
in AsAP, it may be using a padding approach to dealing
with the in-flight enqueue problem for its PE pipelines. The
GreenArrays GA144 chip [14, 15, 21] features a set of small

107

T. Repetti et al.

PC-based MISC processing elements between which data is
only moved from one immediate neighbor to another. It is
notable among these because, while the AsAP chip is a glob-
ally asynchronous locally synchronous device, GreenArrays is
an entirely asynchronous system. In addition to communicat-
ing data via these spatial ports, the GA144 can also moved
instructions as well. While existing documentation discusses
the uses for these input and output ports, the mechanisms
by which backpressure is exerted and operand availability
are established at the microarchitecture level is not detailed.

The WaveScalar and TRIPS architectures both feature
processing elements with limited degrees of local autonomy
and predication. TRIPS instruction memories are filled with
windows of operand-availability triggered instructions that
are in turn fetched via a global program counter [13, 25].
WaveScalar uses dataflow, rather than a PC, for control.
While it explicitly describes its five-stage pipeline in detail
as well as its queue management system as discussed in Sec-
tion 5.3 [23], the TRIPS pipeline is not laid out in detail [25].
Although both WaveScalar and TRIPS use predication within
their processing elements neither considered the possibility of
predicting predicates as a pipeline optimization. A derivative
of the TRIPS project, however, did use predicates for a dif-
ferent purpose: as a form of branch history when predicting
the next hyperblock [24].

8 CONCLUSION

‘We have examined several microarchitectural concerns unique
to pipelines within the processing elements of a triggered-
instruction-based spatial architecture. Our two proposed haz-
ard mitigation techniques prove successful across a variety
of workloads in controlling CPI and show marked improve-
ments to the energy-delay curve of a processing element.
This enables either higher operating frequencies at iso-Vpp,
lower supply voltages at iso-frequency, or deeply pipelined
operations such as floating point or custom CISC-like ISA
extensions.

We demonstrate the vast design space for combined circuit
and microarchitectural techniques, examining the subtle in-
terplay between microarchitecture, circuit optimization and
application domain in choosing optimal PE designs. We find
that the most optimal designs for our integer system are
two-stage pipelines with our two pipeline optimization fea-
tures enabled. Taken together, this work demonstrates the
flexibility and criticality of intra-PE microarchitecture for
spatial architectures.

9 ACKNOWLEDGEMENTS

This work is supported by C-FAR, one of the six SRC STAR-
net Centers sponsored by MARCO and DARPA, a grant
from the National Science Foundation under CCF-1065338,
and through funding from the Brazilian Federal Agency for
Support and Evaluation of Graduate Education (CAPES)
under grant 13289-13-6.

Pipelining a Triggered Processing Element

REFERENCES

[1] Bushra Ahsan, Michael C. Adler, Neal C. Crago, Joel S. Emer,

(10

(11

(12

(13

(14

[16

(17

18

(19

]

]

Aamer Jaleel, Angshuman Parashar, and Michael I. Pellauer.
2013. Distributed Memory Operations. (Sept. 26 2013). reference:
United States Patent App. 14/037,468.

Massimo Alioto. 2012. Ultra-Low Power VLSI Circuit Design
Demystified and Explained: A Tutorial. I[EEE Transactions on
Circuits and Systems I: Regular Papers 59, 1 (2012), 3-29.
Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay J. Patel, and
Mark Horowitz. 2010. Energy-Performance Tradeoffs in Processor
Architecture and Circuit Design: A Marginal Cost Analysis. In
ACM SIGARCH Computer Architecture News, Vol. 38. ACM,
26-36.

Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan
Apperson, Eric Work, Jeremy Webb, Michael Lai, Tinoosh Mohs-
enin, Dean Truong, et al. 2007. AsAP: A Fine-Grained Many-Core
Platform for DSP Applications. IEEE Micro 27, 2 (2007).
Brent Bohnenstiehl, Aaron Stillmaker, Jon J Pimentel, Timothy
Andreas, Bin Liu, Anh T Tran, Emmanuel Adeagbo, and Bevan M
Baas. 2017. KiloCore: A 32-nm 1000-Processor Computational
Array. IEEE Journal of Solid-State Circuits (2017).

Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike
Dahlin, Lizy K John, Calvin Lin, Charles R. Moore, James Burrill,
Robert G. McDonald, and William Yoder. 2004. Scaling to the
End of Silicon with EDGE Architectures. Computer 37, 7 (2004),
44-55.

John Y. Chen. 2009. GPU Technology Trends and Future Re-
quirements. In Electron Devices Meeting (IEDM), 2009 IEEE
International. IEEE, 1-6.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A
Spatial Architecture for Energy-Efficient Dataflow for Convolu-
tional Neural Networks. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on. IEEE,
367-379.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze.
2017. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for
Deep Convolutional Neural Networks. IEEE Journal of Solid-
State Circuits 52, 1 (2017), 127-138.

Weihaw Chuang and Brad Calder. 2003. Predicate Prediction
for Efficient Out-of-Order Execution. In Proceedings of the 17th
Annual International Conference on Supercomputing. ACM, 183~
192.

Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and
Robert W Stewart. 2014. The Zynq Book: Embedded Processing
with the ARM Cortex-A9 on the Xilinz Zyng-7000 All Pro-
grammable SoC. Strathclyde Academic Media.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson,
and Mark Horowitz. 2012. CPU DB: Recording Microprocessor
History. Commun. ACM 55, 4 (2012), 55-63.

Paul Gratz, Changkyu Kim, Karthikeyan Sankaralingam, Heather
Hanson, Premkishore Shivakumar, Stephen W Keckler, and Doug
Burger. 2007. On-chip Interconnection Networks of the TRIPS
Chip. IEEE Micro 27, 5 (2007), 41-50.

GreenArrays. 2010. GreenArrays F18A 18-bit Computer. (2010).
GreenArrays. 2010. Product Brief: GreenArrays. (2010).
Seongmoo Heo and Krste Asanovic. 2004. Power-Optimal Pipelin-
ing in Deep Submicron Technology. In Proceedings of the 2004
international symposium on Low power electronics and design.
ACM, 218-223.

M.S. Hrishikesh, Doug Burger, Norman P Jouppi, Stephen W.
Keckler, Keith I. Farkas, and Premkishore Shivakumar. 2002. The
Optimal Logic Depth per Pipeline Stage is 6 to 8 FO4 Inverter
Delays. In ACM SIGARCH Computer Architecture News, Vol. 30.
IEEE Computer Society, 14-24.

Zigiang Huang, Andrew D. Hilton, and Benjamin C. Lee. 2016.
Decoupling Loads for Nano-Instruction Set Computers. In Pro-
ceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 406-417.

Angshuman Parashar, Micahel Pellauer, Michael Adler, Bushra
Ahsan, Neal Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai,
Mohit Gambhir, Aamer Jaleel, Randy Allmon, Rachid Rayess,
Stephen Maresh, and Joel Emer. 2013. Triggered Instructions:
A Control Paradigm for Spatially-Programmed Architectures. In
ACM SIGARCH Computer Architecture News, Vol. 41. ACM,
142-153.

108

[20]

[21]

(22]

(23]

(24]

[26]

[27]

(28]

(29]

(30]

[31]

(32]

(33]

(34]

(35]

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra
Ahsan, Randy Allmon, Neal Crago, Kermin Fleming, Mohit Gamb-
hir, Aamer Jaleel, Tushar Krishna, Daniel Lustig, Stephen Maresh,
Vladimir Pavlov, Rachid Rayess, Antonia Zhai, and Joel Emer.
2015. Efficient Control and Communication Paradigms for Coarse-
Grained Spatial Architectures. ACM Transactions on Computer
Systems (TOCS) 33, 3 (2015), 10.

Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah,
Nishant Total, Sarah Chasins, and Rastislav Bodik. 2014. Chloro-
phyll: Synthesis-Aided Compiler for Low-Power Spatial Architec-
tures. In ACM SIGPLAN Notices, Vol. 49. ACM, 396-407.
Andrw Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott
Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram
Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith,
Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Recon-
figurable Fabric for Accelerating Large-Scale Datacenter Services.
In Computer Architecture (ISCA), 2014 ACM/IEEE 41st In-
ternational Symposium on. IEEE, 13-24.

Andrew Putnam, Steve Swanson, Martha Mercaldi, Ken Michel-
son, Andrew Petersen, Andrew Schwerin, Mark Oskin, and Susan
Eggers. 2005. The Microarchitecture of a Pipelined WaveScalar
Processor: An RTL-Based Study. Tech. Rep. TR-2005-11-02
(2005).

Behnam Robatmili, Dong Li, Hadi Esmaeilzadeh, Sibi Govindan,
Aaron Smith, Andrew Putnam, Doug Burger, and Stephen W
Keckler. 2013. How to Implement Effective Prediction and For-
warding for Fusable Dynamic Multicore Architectures. In High
Performance Computer Architecture (HPCA2013), 2018 IEEE
19th International Symposium on. IEEE, 460-471.

Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu,
Changkyu Kim, Jaehyuk Huh, Doug Burger, Stephen W Keckler,
and Charles R Moore. 2003. Exploiting ILP, TLP, and DLP
with the Polymorphous TRIPS Architecture. In ACM SIGARCH
Computer Architecture News, Vol. 31. ACM, 422-433.
Reetinder Sidhu and Viktor K Prasanna. 2001. Fast Regular Ex-
pression Matching using FPGAs. In Field-Programmable Custom
Computing Machines, 2001. FCCM’01. The 9th Annual IEEE
Symposium on. IEEE, 227-238.

Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose,
Victor Zyuban, Philip N. Strenski, and Philip G. Emma. 2002. Op-
timizing Pipelines for Power and Performance. In Microarchitec-
ture, 2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM
International Symposium on. IEEE, 333-344.

Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew
Petersen, Andrew Putnam, Ken Michelson, Mark Oskin, and
Susan J. Eggers. 2007. The Wavescalar Architecture. ACM
Transactions on Computer Systems (TOCS) 25, 2 (2007), 4.
David Tarjan, Shyamkumar Thoziyoor, and Norman P Jouppi.
2006. CACTI 4.0. Technical Report. Technical Report HPL-2006-
86, HP Laboratories Palo Alto.

Michael Bedford Taylor. 1999. Design Decisions in the Implemen-
tation of a RAW Architecture Workstation. Ph.D. Dissertation.
Massachusetts Institute of Technology.

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,
Fae Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-
Wook Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski,
Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Ama-
rasinghe, and Anant Agarwal. 2002. The RAW Microprocessor: A
Computational Fabric for Software Circuits and General-Purpose
Programs. IEEE micro 22, 2 (2002), 25-35.

Jesmin Jahan Tithi, Neal C. Crago, and Joel S. Emer. 2014.
Exploiting Spatial Architectures for Edit Distance Algorithms. In
Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on. IEEE, 23-34.

Louis Woods, Gustavo Alonso, and Jens Teubner. 2013. Parallel
Computation of Skyline Queries. In Field-Programmable Cus-
tom Computing Machines (FCCM), 2013 IEEE 21st Annual
International Symposium on. IEEE, 1-8.

Louis Woods, Gustavo Alonso, and Jens Teubner. 2015. Paralleliz-
ing Data Processing on FPGAs with Shifter Lists. ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS) 8,
2 (2015), 7.

Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim,
and Kenneth A. Ross. 2014. Q100: The Architecture and Design
of a Database Processing Unit. ACM SIGPLAN Notices 49, 4
(2014), 255-268.

