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Abstract
When operating systems and hardware manage power and
energy, they must be conservative in order to deliver re-
quested resources while maintaining an expected rate of
system throughput. Application-level energy management is
more flexible, because applications can choose to request
fewer resources or expect less performance, effectively trad-
ing accuracy or runtime for power. We propose to leverage
this flexibility with energy exchanges, a C++ library exten-
sion that allows software to dynamically react to measured
power and energy use by reducing functionality.

1. Background and Problem
Given energy’s status as a precious commodity, many have
ideas about how to police its use. Solutions for power and
energy management abound, from hardware to the operat-
ing system to the virtual machine and the compiler. At the
base of the stack, hardware has become dynamically ad-
justable, offering a range of supply voltages, operating fre-
quencies, and sleep states. In the middle, operating systems
tune hardware based on the measured and expected needs of
applications running above. For example, Linux has policies
to manage processor idle states and frequency scaling [5],
power-aware scheduling algorithms have been proposed to
schedule applications such that resource slow-downs can be
made for longer periods or at a larger scale [4].

Such hardware and operating system adjustments need
no application-level changes. Sometimes, this is desirable:
many application developers cannot or will not modify their
programs. However, keeping applications out of the energy
management picture limits efficiency potentials, because ap-
plications have three energy control mechanisms that lower
levels do not. First, only applications have the ability to
request fewer processing and memory resources; hardware
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and operating systems miss this opportunity to save power
and energy. Second, hardware and operating systems do not
know when or by how much it is acceptable to slow down a
program, so they must err on the side of caution when trading
performance for power. Compounding their circumspection,
existing power tuning controls often operate on a whole-
core or whole-socket granularity, with potentially more than
one application sharing the core or socket. At times when
it is appropriate for one application to trade performance
for power, it may not be for another, preventing the sys-
tem from taking advantage. Conversely, applications know
their own needs, and can decide exactly when, where, and to
what degree performance should be traded for power. Third,
while the system can trade only performance for power, the
application has a second currency at its disposal: accuracy.
Absent application-level information, the system cannot in-
terfere with the function of a program. For these reasons,
application-level energy management must be used for opti-
mal energy and power efficiency.

2. Our Solution
We propose energy exchanges, a tool that empowers pro-
grammers to mandate when, where, and how to trade accu-
racy and performance for power and energy use. Using the
short but expressive application-level directives provided by
energy exchanges, programmers can implement feedback-
driven changes to the application’s behavior, for example,
switching from precise to sloppy decoding in a video player
as battery life declines, prioritizing a mobile games en-
ergy use over third-party advertisements, or bypassing some
nonessential part of a robot’s activity for a time so that it
can run longer in between charges. We have implemented
a prototype version of energy exchanges as a software only
C++ library. The library monitors system-wide power and
energy consumption by sampling standard hardware energy
counters [3], then attributes measured usage to applications
and threads using a special method of accounting.

3. Relationship to Prior Work
Energy exchanges offer several new features over standalone
energy profiling and existing application-level energy man-
agement techniques [1, 6–10]. To begin, the exchanges are
simple to use and integrate into existing programs and sys-
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Figure 1: Energy exchanges allow code to adapt to meet a
program’s energy goals. Here, an energy exchange augmented
bodytrack maximizes quality while never exceeding various al-
located energy budgets. The application adapts by dropping frames
as needed based on the energy consumed so far, the total allocation,
and the number of remaining frames to process.

tems. They require no new hardware, operating systems, lan-
guages, or compilers. Instead, they require only short soft-
ware annotations supported by the library extension. Next,
unlike many software management strategies, e.g., compiler-
inserted DVFS hints, that tune the same hardware knobs as
the OS but in an application-specific way, energy exchanges
allow the application to adjust itself. One benefit of this is
that energy exchanges complement rather than replace ex-
isting system level energy management strategies. Addition-
ally, self-adjustment means behavior can be based on dy-
namic energy, power, and runtime, so a program only makes
performance or accuracy trades when necessary, and not ev-
ery time the program runs. Finally, energy exchanges are ex-
tremely flexible. The energy and power usage feedback they
provide can be used to modify just about anything a devel-
oper might want to change about their program’s behavior.
This means that a single energy-exchange augmented appli-
cation will function across a range of different inputs, archi-
tectures, and degrees of parallelism.

4. A First Example
To demonstrate energy exchanges, we used them to augment
bodytrack, a program from the Parsec benchmark suite [2].
The program tracks poses of a person recorded on multiple
video cameras, with most of the program’s computation in-
side a for-loop that processes video frames one at a time.
Energy exchanges insert just a few lines of new code around
and inside this loop to modify the program to drop as many
(or as few) frames as necessary to meet a pre-specified en-
ergy allocation. Figure 1 demonstrates how bodytrack can
be made to perform within various allocated budgets from
1000 to 12000 joules, with just one set of energy exchange
annotations.

Completely and dynamically modifying an 11,000 line
program’s energy use with just 12 added lines of code
demonstrates exactly the kind of simplicity and potency we
hope energy exchanges will add to the energy management
landscape.
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