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The goal: Isolating scaling deficiencies in benchmarks Methodology Details

Narrow down the source of problematic parallel program scaling.
Machine Specifications. The hardware platform for all experiments was a Dell Precision T5500

perect === Micro-scaling metrics at the application Workstation with two quad core processors (Intel X550, 2.66 GHz, 8M last level cache) and 24 GB of
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and inputs, ] inefficiencies throughout a code base. For Ben_chrTlarks. We used a selection of applications in the Parsec parallel benchmark suite [2]. These
and ] example, if there are a small number of poorly appllcanons are‘non—sclennﬁc, written ‘|n C‘and CH+, pa‘rallehz‘ed using pthreads, and have a variety
Ievealperfarmance issues about arbitrary regions of interest, including 8 scaling blocks in a program, then only a few lines of scaling behaviors. We ran each application twenty times with 1, 2, 4, 8, and 16 threads.
idual basic blocks, , algorithms, or critical sections. of code contain most of the scalability issues. swaptions bodytrack
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Start with the existing parallel block vector (PBV) profile. pBvs [1] measure application-level 3 SCE“"_E PFODeff_‘eS- For example ‘f_\e‘ PlfmeqT an program as a whole during a block’s execution. 0.511.522.533.544.55 051152253054
parallelism each time a basic block is executed. We use these profiles as a first step in collecting micro-scaling %%, ,a o 44;: &, function contains blocks that exhibit five different Measured Runtime (s) Measured Runtime (s)
metrics. The figure below shows a PBV for a pseudo program with five basic blocks, BB:A-E. In the center, the 6’4 L "6‘ ” X Vg‘s% qualitative types of scaling behavior.
master thread and four worker threads execute the blocks over time. At right, a PBV profile counts the dynamic te, SR
S, %,

executions of each static block at each thread count.
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The Future of Micro-Scaling Metrics
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[ Tolotots DiAtime DiAtme They also show that blocks ar‘e responsible o . )
ool o]0 Application @ 2threads | @ 16 threads for a large percentage of runtime even as * Integration into existing performance analysis tools. Existing parallel performance analyses
= ’ oozl [E blackscholes 99.6% 99.4% parallelism scales up. The table at left lists the either look for specific kinds of inefficiencies in software or find a broader range of inefficiencies by
C D o[o[o[0]3] — relative time consumed by the top ten hottest monitoring ineffective use of hardware and thread resources over time. In the second case, the thread or
odytrack 97.6% 95.4% block t of the whole program time. While th time-based resource usage patterns have to be mapped back to the source code. Instead, micro-scaling
L P P prow ocks out of the whole progra " . e the metrics monitor parallelism from the program’s point of view, so that any scaling deficiencies found are
i i acesin - ten hottest blocks are not always the same at 2 already tied to the source code. We think this new, flexible, fine-grained analysis complements existing
i 3 fluidanimate 96.1% 92.6% and 16 threads, it is true that at both degrees of techniques, and it would be beneficial to add micro-scaling metrics to existing performance analysis tools
Time - parallelism only a few blocks take up most of the for software engineers.
streamcluster 95.0% 99.2% i
Collect PBV snapshots at different thread counts. The second step is to collect PBV program runtime. + Quantifying the ability of micro-scaling to narrow down scaling deficiencies.
profiles while running the application at different maximum thread counts. This can be done at runtime. swaptions 91.7% 91.7% 8 Y g . g de - In
future work, we plan to concretely measure the degree to which micro-scaling metrics narrow down

using a tool such as the open source Harmony [2]. Profiles at multiple thread counts reveal per-block
scaling effects, as for the matrix multiply program below.

scalability problems in source code. We plan to examine this both in benchmarks and real-world

applications.
nie < s . - Micro-Scaling Metrics in source code. It can be tricky to reason about basic block boundaries in
¢ 3 (pthread_t3) o software. To make micro-scaling metrics understandable at a high level, debug-annotated assembly
3 ¥ 3 & - g code can be used to propagate the qualitative metric categorizations into source code colorings. For
2 E g i mm? example, we might color perfectly scaling blocks green, moderately scaling blocks blue, poorly
H H e H scaling blocks yellow, non-scaling red, etc.
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Rank blocks by scaling properties. The final 20000
step is to use a numeric scaling metric to enable a full
ranking of blocks from least to most scalable. This metric is
simply the change in estimated runtime (see final panel) of = 212000
a block over its increasing number of maximum available
thread counts, or the slope if a block's DIA-time is plotted
against maximum thread count as in the figure at right. 000
Along this spectrum, blocks can also be divided into named
scaling categories as depicted.
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