
..

HARDWARE PARTITIONING FOR
BIG DATA ANALYTICS

..

TARGETED DEPLOYMENT OF HARDWARE ACCELERATORS CAN IMPROVE THROUGHPUT AND

ENERGY EFFICIENCY IN LARGE-SCALE DATA PROCESSING. DATA PARTITIONING IS CRITICAL

FOR MANIPULATING LARGE DATASETS AND IS OFTEN THE LIMITING FACTOR IN DATABASE

PERFORMANCE. A HARDWARE ACCELERATOR FOR RANGE PARTITIONING AND A

HARDWARE-SOFTWARE STREAMING FRAMEWORK PROVIDE AN ORDER OF MAGNITUDE

IMPROVEMENT IN PARTITIONING ENERGY AND PERFORMANCE.

......In the era of big data, diverse
fields such as natural language processing,
medical science, national security, and business
management depend on analyzing massive,
multidimensional datasets. These commun-
ities rely on computer systems to process data
quickly and efficiently. In this article, we dis-
cuss specialized hardware to more effectively
address this task.

Databases manage large quantities of data,
letting users query and update the information
that they contain. The database community
has been developing algorithms to support fast
or even real-time queries over relational data-
bases, and, as data sizes grow, researchers
increasingly opt to partition the data for faster
subsequent processing. Partitioning enables
the resulting partitions to be processed inde-
pendently and more efficiently (that is, in par-
allel and with better cache locality).
Partitioning is used in virtually all modern
database systems including Oracle Database
11g, IBM DB2, and Microsoft SQL Server
2012 to improve performance, manageability,
and availability in the face of big data, and the
partitioning step itself has become a key deter-
minant of query-processing performance.

In this article, we demonstrate that soft-
ware implementations of data partitioning
have fundamental performance limitations
that make it computation-bound, even after
parallelization. We describe and evaluate a
system that both accelerates data partitioning
itself and frees processors for other computa-
tions. The system consists of two parts: an
area and power-efficient specialized proces-
sing element for range partitioning, called
the Hardware-Accelerated Range Partitioner
(HARP); and a high-bandwidth, hardware-
software streaming framework that transfers
data to and from HARP and integrates seam-
lessly with existing hardware and software.

Our approach
As the price of memory drops, modern

databases aren’t typically disk-I/O-bound,1,2

with many databases now either fitting into
main memory or having a memoryz-resident
working set. At Facebook, 800 servers supply
over 28 Tbytes of in-memory data to users.3

Despite the relative scarcity of memory
pins, there is ample evidence that these
and other large data workloads don’t saturate
the available bandwidth and are largely

Lisa Wu

Raymond J. Barker

Martha A. Kim

Kenneth A. Ross

Columbia University

0272-1732/14/$31.00�c 2014 IEEE Published by the IEEE Computer Society

...

109

computation-bound. Servers running Bing,
Hotmail, and Cosmos (Microsoft’s search,
email, and parallel data analysis engines,
respectively) show 67 to 97 percent processor
use but only 2 to 6 percent memory band-
width use under stress testing.4 Google’s BigT-
able and Content Analyzer (large data storage
and semantic analysis, respectively) show fewer
than 10,000 per millisecond last-level cache
misses, which represents just a couple percent
of the total available memory bandwidth.5

Noting the same imbalances between
computing and memory bandwidth, others
have opted to save power and scale down
memory throughput to better match comput-
ing throughput6,7 or to adjust the resource
allocation in server microarchitectures.8 We
propose to resolve the imbalance by deploy-
ing specialized hardware to alleviate comput-
ing bottlenecks and more fully exploit the
available pin bandwidth. This work embodies
a unique approach that maximizes memory
bandwidth use rather than rebalancing mem-
ory and computing together. This is particu-
larly significant in light of the large volumes
of data used in modern analyses.

Background and motivation
To begin, we provide some background

on partitioning: its role and prevalence in
databases, and its software characteristics.

Partitioning background
Partitioning a table splits it into multiple

smaller tables called partitions. Each row in

the input table is assigned to exactly one par-
tition on the basis of the value of the key
field. Figure 1 shows an example table of sales
transactions partitioned using the transaction
date as the key. This work focuses on a partic-
ular partitioning method called range parti-
tioning, which splits the space of keys into
contiguous ranges, as illustrated in Figure 1
where sales transactions are partitioned by
quarter. The boundary values of these ranges
are called splitters.

Partitioning a table allows fine-grained
synchronization and data distribution. More-
over, when tables become so large that they
or their associated processing metadata can’t
fit in the cache, partitioning improves the
performance of many critical database oper-
ations, such as joins, aggregations, and
sorts.9-11 Partitioning is also used in data-
bases for index building, load balancing,
and complex query processing.12 More gen-
erally, a partitioner can improve locality for
any application that needs to process large
datasets in a divide and conquer fashion,
such as histogramming, image alignment
and recognition, MapReduce-style compu-
tations, and cryptoanalysis.

To demonstrate the benefits of partition-
ing, let’s examine joins. A join takes a com-
mon key from two tables and creates a new
table containing the combined information
from both tables. For example, to analyze
how weather affects sales, we would join the
sales records in SALES with the weather
records in WEATHER, where SALES.date
¼¼ WEATHER.date. If the WEATHER
table is too large to fit in the cache, this
process will have poor cache locality, as the
left side of Figure 2 depicts. On the other
hand, if both tables are partitioned by
date, each partition can be joined in a pair-
wise fashion, as the right side of Figure 2
illustrates. When each partition of the
WEATHER table fits in the cache, the per-
partition joins can proceed more rapidly.
When the data is large, the time spent parti-
tioning is more than offset by the time saved
with the resulting cache-friendly, partition-
wise joins.

Join performance is critical because
most queries begin with one or more joins
to cross-reference tables, and as the most
data-intensive and costly operations, their

5/6/11
2/2/11

7/27/11
6/1/11

10/10/11
9/3/11

5/20/11
12/6/11

5/6/11

2/2/11

7/27/11

5/20/11

12/6/11

9/3/11

10/10/11

6/1/11
Date Qty. SKU

Date Qty. SKU

3/1/11

Input table Partitioned dataSplitters

7/1/11

10/1/11

<

<

<
>=

>=

>=

Figure 1. An example table of sales records range partitioned by date into

smaller tables. Processing big data one partition at a time makes working

sets cache-resident, improving the overall analysis speed.

..

TOP PICKS

..

110 IEEE MICRO

influence on overall performance is large.
We measured the fraction of Transaction
Processing Performance Council Bench-
mark H (TPC-H; see http://www.tpc.org/
tpch/default.asp) query-execution time attrib-
utable to joins using MonetDB (http://www.
monetdb.org), an open source database that
provides high performance on queries
over large datasets. Figure 3 plots the per-
cent of TPC-H runtime spent joining
tables. The values shown are the median
across the 10 runs of each query. Ranging
from 5 to 97 percent, TPC-H spends on
average 47 percent of its execution time in
a join operation. Current join implemen-
tations spend up to half their time in par-
titioning,11 thus placing partitioning at
approximately 25 percent of TPC-H
query-execution time.

In addition to performance, a good parti-
tioner will have several other properties.
Ordered partitions, whereby there is an
order among output partitions, are useful
when a query requires a global data sort.
Record order preservation, whereby all
records in a partition appear in the same
order in which they were found in the input
table, is important for some algorithms (for
example, radix sorting). Finally, skew toler-
ance maintains partitioning throughput
even when input data is unevenly distrib-
uted across partitions. HARP provides all
three of these properties as well as high per-
formance and low energy use.

Software partitioning evaluation
We now characterize the performance and

limitations of software partitioning on general-
purpose CPUs. Because partitioning scales
with additional cores, we analyze both single-
and multithreaded performance.10,11,13

For these characterizations, we use a
microbenchmark that partitions 100 million
random records. Although actual partition-
ing implementations would allocate output
space on demand during partitioning, we

SALES

WEATHER

Partition
(SALES)

Join(1)
Partition

(WEATHER)
Join(2) Join(3) Join(4)

Join(SALES,WEATHER)

SALES_1

SALES_2

SALES_3

SALES_4
WEATHER_1

WEATHER_2 WEATHER_3

WEATHER_4

Without partitioning, even smaller
tables exceed cache capacity.
Consequently, lookups thrash and
the join operation is slow.

After partitioning, small table
partitions are cache resident,
accelerating per-partition joins.

Figure 2. Joining two large tables exceeds cache capacity. Thus, join implementations partition tables first and then compute

partition-wise joins, each of which exhibits substantially improved cache locality.10,11 Joins are extremely expensive on large

datasets, and partitioning represents up to half of the observed join time.11

0

20

40

60

80

100

17
 9 11
 5 7 8 22
 1 2 12

21

18

19

10

15
 3 20
 4 16

14

13
 6

Av
g

.

 Q
ue

ry
 e

xe
cu

tio
n

tim
e

(%
)

TPC-H query

Other Join

Figure 3. Several key database operations such as join, sort, and

aggregation use partitioning to improve performance. Here we see

joins consuming 47 percent of the Transaction Processing Performance

Council Benchmark H (TPC-H) execution time on MonetDB. With current

join algorithms spending roughly half of the join time on partitioning,11

we estimate that partitioning for joins alone accounts for roughly one

quarter of query-execution time.

...

MAY/JUNE 2014 111

conservatively preallocate space for the out-
put tables beforehand to streamline the inner
loop. The partitioning inner loop runs over
an input table reading one record at a time,
computing its partition using a partition
function, and then writing the record to the
destination partition. We implement the
partition function using an equality range-
partitioning implementation,14 which per-
forms a binary search of the splitters.

We benchmarked software partitioning
throughput on an eight-core Xeon server,
and observed from the data in Figure 4 the
following: partitioning throughput depends
on the number of partitions; partitioning
parallelizes reasonably well from one to 16
threads; and while the memory system sup-
ports a bandwidth peak of 25.6 Gbytes per
second, our optimistic software microbe-
nchmark was able to use only 3 GBps with
16 threads. Even after deploying all comput-
ing resources in the server, partitioning
remains computing-bound, severely underus-
ing available memory bandwidth. In con-
trast, we will demonstrate that a single
HARP-accelerated thread achieves the th-
roughput of close to 16 software threads
using a fraction of the power.

Hardware-Accelerated Range Partitioner
As we saw in the previous discussion, a

partitioner’s input is a large table, and its out-
put is a set of smaller tables that are easier to
process by virtue of their smaller size. Here,
we describe the architecture and microarchi-
tecture of a system that incorporates HARP.

Overview
Figure 5 shows a block diagram of the

major components in a system with range-
partitioning acceleration. Two stream buf-
fers—one running from memory to HARP
(SBin) and the other from HARP to memory
(SBout)—decouple HARP from the rest of
the system. The range-partitioning computa-
tion is accelerated in hardware (indicated by
the double arrow in Figure 5), while inbound
and outbound data stream management is
left to software (single arrows in Figure 5),
maximizing flexibility and simplifying the
interface to the accelerator. One set of
instructions provides configuration and
control for HARP, which freely pulls data
from and pushes data to the stream buffers,
while a second set of streaming instructions
moves data between memory and the stream
buffers. Because data moves in a pipeline—
that is, streamed in from memory via the
streaming framework, partitioned with
HARP, and then streamed back out—the
lowest-throughput component determines
overall system throughput.

5

10

15

20

25

30

0 100 200 300 400 500

Pa
rt

iti
on

in
g

 th
ro

ug
hp

ut
 (

G
B

p
s)

No. of partitions

1 thread

16 threads

Potential system-memory throughput

Figure 4. Sixteen threads improve partitioning throughput by 8.5 times,

peaking at 2.9 and 2.6 GBps for 128- and 256-way, respectively. However,

partitioning remains computation-bound, underusing available memory

bandwidth.

SBout

SB in

HARP
(Fig. 6)

Core

L1

Memory
controller

Memory

Core

L1

New structures

Hardware-accelerated
data partitioning

L2 L2

Software-controlled
data streaming

SBout

SB in

Figure 5. Block diagram of a typical two-core system with Hardware-

Accelerated Range Partitioner (HARP) integration. New components

(HARP and stream buffers) are shaded.

..

TOP PICKS

..

112 IEEE MICRO

HARP accelerator
The HARP acceleration is managed via

three instructions. The instruction set
splitter is invoked once per splitter to
delineate a boundary between partitions;
partition start signals HARP to
start pulling data from the SBin; and
partition stop signals HARP to stop
pulling data from SBin and drain all in-
flight data to SBout. To program a 15-way
partitioner, for example, HARP uses
seven set splitter instructions to set
values for each splitter value, followed by a
partition start to start partitioning.
Because HARP’s microarchitectural state is
not visible to other parts of the machine, the
splitter values are not lost upon interruption.

HARP pulls and pushes records in
64-byte bursts (tuned to match the system
vector width and DRAM burst size). The
HARP microarchitecture consists of three
modules, as Figure 6 depicts, and is tailored
to range partition data highly efficiently:

� The serializer pulls bursts of records
from SBin and uses a simple finite
state machine to pull each record
from the burst and feed them, one

after another, into the subsequent
pipeline. As soon as one burst has
been fed into the pipe, the serializer is
ready to pull the subsequent burst.

� The conveyor compares record keys
against splitters. The conveyor accepts
a stream of records from the serializer
into a deep pipeline with one stage
per splitter. At each stage, the key is
compared to the corresponding split-
ter and routed either to the appropri-
ate partition or to the next pipeline
stage. Partition buffers, one per parti-
tion, buffer records until a burst of
them is ready.

� The merge module monitors the par-
tition buffers as records accumulate.
It looks for full bursts of records that
it can send to a single partition.
When such a burst is ready, merge
drains the partitioning buffer, one
record per cycle, and sends the burst
to SBout.

HARP uses deep pipelining to hide the
latency of multiple splitter comparisons. We
experimented with a tree topology for the
conveyor, analogous to the binary search tree

<
=

<
=

<
=

Serializer

Convert burst
to stream of

records (FSM)

Conveyor

Merge

Pull burst of records from the most full partition buffer (FSM)

WE WE WE WE WE WE WE

From
SB in

To SBout

Figure 6. HARP draws records in bursts, serializing them into a single stream that is fed into a pipeline of comparators. At

each stage of the pipeline, the record key is compared with a splitter value, and the record is either filed in a partition buffer

(downward) or advanced (to the right) according to the comparison outcome. As records destined for the same partition

collect in the buffers, the merge stage identifies and drains the fullest buffer, emitting a burst of records all destined for the

same partition. (WE: write enable.)

...

MAY/JUNE 2014 113

in the software implementation, but found
that the linear conveyor architecture was
preferable. When the pipeline operates bub-
ble-free, as it does in both cases, it processes
one record per cycle, regardless of topology.
The only difference in total cycle count
between the linear and tree conveyors was the
overhead of filling and draining the pipeline
at the start and finish. With large record
counts, the difference is negligible in time
required to fill and drain a k-stage pipeline
versus a log(k)-stage pipeline in the tree ver-
sion. Although cycle counts were more or less
the same between the two approaches, the
linear design had a slightly shorter clock
period because of the more complex layout
and routing requirements in the tree, result-
ing in slightly better overall throughput.

The integer comparators in HARP can
support all SQL data types as partitioning
keys. This is because the representations typi-
cally lend themselves to integer comparisons.
For example, MySQL represents dates and
times as integers: dates as 3 bytes, time stamps
as 4 bytes, and datetimes as 8 bytes.15 HARP
can also accomplish partitioning ASCII
strings alphabetically on the first N characters
with an N-byte integer comparator.

Delivering data to and from HARP
To ensure that HARP can process data at

its full throughput, the framework surround-
ing HARP must stream data to and from
memory at or exceeding the rate that HARP
can partition. This framework provides soft-
ware-controlled streams and allows the
machine to continue seamless execution after
an interrupt, exception, or context switch.
We describe a hardware-software streaming
framework based on the concept outlined in
Jouppi’s prefetch stream buffer work.16

Software moves data between memory
and the stream buffers via four instructions.
Instruction sbload loads data from mem-
ory to SBin, taking as arguments a source
address in memory and a destination stream
buffer ID. The instruction sbstore does
the reverse, taking data from the head of the
designated outgoing stream buffer and writ-
ing it to the specified address. Each sbload
and sbstore moves one vector’s worth of
data (that is, 128 or 256 bytes) between
memory and the stream buffers. A full/empty

bit on the stream buffers will block the
sbloads and sbstores until there is
space (in SBin) and available data (in SBout).
Because the CPU software knows the
table size, it knows how many sbload/
sbstore instructions must be executed to
partition the entire table.

To ensure seamless execution after an
interrupt, exception, or context switch, we
make a clean separation of architectural and
microarchitectural states. Specifically, only
the stream buffers themselves are architectur-
ally visible, with no accelerator state exposed
architecturally. This separates the HARP
microarchitecture from the context and will
help facilitate future extension to other
streaming accelerators. Before the machine
suspends accelerator execution to service an
interrupt or a context switch, the OS will exe-
cute an sbsave instruction to save the
stream buffer contents. Prior to an sbsave,
HARP must be stopped and allowed to drain
its in-flight data to an outgoing stream buffer
by executing a partition stop instruc-
tion. As a consequence, the stream buffers
should be sized to accommodate the maxi-
mum amount of in-flight data supported by
HARP. After the interrupt has been serviced,
before resuming HARP execution, the OS
will execute an sbrestore to ensure that the
streaming states are identical before and after
the interrupt or context switch.

These stream buffer instructions, together
with the HARP instructions described in the
previous section, allow full software control
of all aspects of the partitioning operation,
except for the work of partitioning itself,
which is handled by HARP.

To implement the streaming instructions,
we propose minimal modifications to con-
ventional processor microarchitecture. Figure
7 summarizes the new additions. The
sbload instructions borrow the existing
microarchitectural vector load (for example,
Intel’s Streaming SIMD Extensions or
PowerPC’s AltiVec) request path, diverging
from vector load behavior when data fills
return to the stream buffer instead of the data
cache hierarchy. To support this, we add a
1-bit attribute to the existing last-level cache
request buffer to differentiate sbload
requests from conventional vector load
requests. This attribute acts as the multiplexer

..

TOP PICKS

..

114 IEEE MICRO

select for the return datapath, as Figure 7
illustrates. Finally, a dedicated bidirectional
data bus is added to connect that mux to the
stream buffer.

Stream buffers can be made fully coherent
to the core caches. The sbload instructions
already reuse the load request path, so posi-
tioning SBin on the fill path such that hits in
the cache can be returned to the SBin will
ensure that sbload requests always produce
the most up-to-date values. Figure 7 depicts
the scenario when a request misses all levels of
the cache hierarchy, and the fill is not cached,
as sbload requests are noncacheable. On the
store side, sbstore instructions can copy
data from SBout into the existing store buffer,
sharing the store datapath and structures such
as the write combining and snoop buffers.

Stream loads are most effective when data
is prefetched ahead of use, and our experi-
ments indicate that the existing hardware pre-
fetchers are quite effective in bringing
streaming data into the processor. Prefetches
triggered by stream loads can be handled in
one of two ways: fill the prefetched data into
the cache hierarchy as occurs in current pro-
cessors, or fill the prefetched data into the
stream buffer. We choose the former because
it reduces the additional hardware support
needed and incurs minimal cache pollution
by marking prefetched data as nontemporal.
Because sbload requests check the cache
and request buffer for outstanding requests
before sending the request out to the memory
controller, this design allows for coalescing

loads and stores and for shorter data return
latency when the requests hit in the pre-
fetched data in the cache.

Evaluation
To evaluate the throughput, power, and

area efficiency of our design, we implemented
HARP in Bluespec System Verilog (www.
bluespec.com). The partitioner evaluated
here supports 16-byte records with 4-byte
keys. Assuming 64-byte DRAM bursts, this
works out to four records per burst. We evalu-
ate the overhead of the streaming framework
using CACTI.17 For further details about the
methodology, including synthesis settings,
please refer to the methodology section of our
other work.18

We evaluate the proposed HARP system
in the following categories:

� throughput comparison with the
optimistic software range partition-
ing from the “Software partitioning
evaluation” section,

� area and power comparison with the
processor core on which the software
experiments were performed, and

� nonperformance partitioner desiderata.

We use the baseline configuration of
HARP outlined in the previous paragraph,
unless otherwise noted.

HARP throughput
Figure 8 plots the throughput of three

range partitioner implementations: single-

LL
C

 re
q

ue
st

 b
uf

fe
r

Address D/P C/S

Data from memory

Last-level
cache
(LLC)

A multiplexer
that steers the
fill data

A dedicated data
bus to and from
the memory
subsystem

Inbound stream buffer

...

New attribute bit helps route data fill

(demand or prefetch, cache or stream)

SB

Figure 7. Implementation of streaming instructions into existing datapath of a generic last-

level cache request/fill microarchitecture. Required minimal modifications are shaded.

...

MAY/JUNE 2014 115

threaded software, multithreaded software,
and single-threaded software plus HARP.
We see that HARP’s throughput exceeds a
single software thread by 6.5 to 8.8 times,
with the difference primarily attributable
to the elimination of instruction fetch and
control overhead from the splitter compari-
son and the deep pipeline. In particular, the
partitioning operation structure doesn’t
introduce hazards or bubbles into the pipe-
line, allowing it to operate in a near-perfect
fashion—that is, always full as well as
accepting and emitting one record per

clock cycle. We confirm this empirically as
our measurements indicate average cycles
per record ranging from 1.008 (for 15-way
partitioning) to 1.041 (for 511-way parti-
tioning). As Figure 8 indicates, 16 threads
are required for the software implementa-
tion to match the throughput of the hard-
ware implementation. At 3.13 GBps per
core with HARP, augmenting all or even
half of the eight cores with HARP would
provide sufficient computing bandwidth to
fully use all DRAM pins.

In terms of absolute numbers, the baseline
HARP configuration achieved a 5.06-nano-
second critical path, yielding a design that
runs at 198 MHz, delivering partitioning
throughput of 3.13 GBps. This is 7.8 times
faster than the optimistic single-threaded
software range-partitioner described in
the “Software Partitioning Evaluation”
section.

Streaming throughput
Our results in Figure 9 show that C’s stand-

ard library memcpy provides similar through-
put to hand-optimized vector code, whereas
scalar code’s throughput is slightly lower. For
comparison, we have also included the results
of a similar experiment published by IBM
Research.19 Based on these measurements, we
will conservatively estimate that the streaming
framework can bring in data at 4.6 GBps and
write results to memory at 4.6 GBps with a

2

4

6

8

0 100 200 300 400 500
Pa

rt
iti

on
in

g
 th

ro
ug

hp
ut

 (
G

B
p

s)

No. of partitions

1 thread
16 threads
1 thread + HARP

Figure 8. A single HARP unit outperforms

single-threaded software from between 7.8

times with 63 or 255 partitions to 8.8 times

with 31 partitions, approaching the

throughput of 16 threads.

6.8

4.6

6.4

5.4 5.5

memcpy X86
Assembly

(ASM, scalar)

ASM (SSE) memcpy ASM (SSE)

Our experiments Prior results

C
op

y
th

ro
ug

hp
ut

 (
G

B
p

s)

Figure 9. The streaming framework shares much of its implementation with

the existing memory system, and as such its throughput will be comparable

to the copy throughput of existing systems. (SSE: streaming SIMD

extensions.)

5

10

15

20

0 100 200 300 400 500 Pa
rt

iti
on

in
g

 e
ne

rg
y

(jo
ul

es
/G

b
yt

e)

No. of partitions

1 thread
16 threads
1 thread + HARP

Figure 10. This figure shows the energy

consumption in joules per Gbyte of data

partitioned using HARP as the number of

partitions increases. HARP-augmented

cores partition data using 6.3 to 8.7 times

less energy than parallel or serial software.

..

TOP PICKS

..

116 IEEE MICRO

single thread. These data shows that the
streaming framework provides more through-
put than HARP can take in, but not too much
more, resulting in a balanced system.

Area and power efficiency
The addition of the stream buffer and

accelerator hardware does increase the area and
power of the core. Table 1 quantifies the area
and power overheads of the accelerator and
stream buffers relative to a single Xeon core.
Comparatively, the additional structures are
small, with the baseline design point adding
just 6.9 percent area and 4.3 percent power for
both the HARP and the stream buffers. HARP
itself consumes just 2.83 mm2 and 0.11 W.

Because the stream buffers are sized
according to the accelerators they serve, we
quantify their area and power overheads for
each HARP partitioning factor we consider in
Table 1. The proposed streaming framework
adds 0.3 mm2 of area and consumes 10 mW
of power for a baseline HARP configuration.

Energy efficiency
From an energy perspective, this slight

increase in power is overwhelmed by the
improvement in throughput. Figure 10 com-
pares the partitioning energy per gigabyte of
data of software (both serial and parallel)
against HARP-based alternatives. The data
show a 6.3 to 8.7 times improvement in
single-threaded partitioning energy with
HARP.

By design, HARP preserves the record
order. All records in a partition appear in the

same order that they were found in the input
record stream. This is a useful property for
other parts of the database system and is a
natural consequence of the HARP structure,
where only one route exists from input port
to each partition and records can’t pass one
another in-flight.

We evaluate HARPs skew tolerance by
measuring the throughput (that is, cycles per
record) on synthetically unbalanced record
sets. In this experiment, we varied the record
distribution from optimal, where records
were uniformly distributed across all parti-
tions, to pessimal, where all records were sent
to a single partition. Figure 11 shows the

Table 1. Area and power overheads of HARP units and stream

buffers for various partitioning factors.

No. of

partitions

HARP unit Stream buffers

Area Power Area Power

mm2 Xeon (%) Watts Xeon (%) mm2 Xeon (%) Watts Xeon (%)

15 0.16 0.4 0.01 0.3 0.07 0.2 0.063 1.3

31 0.31 0.7 0.02 0.4 0.07 0.2 0.079 1.6

63 0.63 1.5 0.04 0.7 1.30 0.2 0.078 1.6

127 1.34 3.1 0.06 1.3 0.11 0.3 0.085 1.7

255 2.83 6.6 0.11 2.3 0.13 0.3 0.100 2.0

511 5.82 13.6 0.21 4.2 0.18 0.4 0.233 4.7

1

2

3

4

0 25 50 75 100Pa
rt

iti
on

in
g

 th
ro

ug
hp

ut
 (

G
B

p
s)

Records in hot partition (%)

Figure 11. This figure shows the impact of

uneven partition distribution on partitioning

throughput. As input imbalance increases,

throughput drops by at most 19 percent

owing to increased occurrence of back-to-

back bursts to the same partition.

...

MAY/JUNE 2014 117

gentle degradation in throughput as one par-
tition receives an increasingly large share of
records.

This mild degradation is due to the design
of the merge module. Recall that this stage
identifies which partition has the most
records ready and drains them from that par-
tition’s buffer to send as a single burst back to
memory. Back-to-back drains of the same
partition require an additional merge cycle,
which rarely happens when records are dis-
tributed across partitions. Note that this tol-
erance is independent of many factors
including splitter number, key size, or parti-
tioned table size.

The baseline HARP design supports four
records per burst, resulting in a 25 percent
degradation in throughput between best- and
worst-case skew. This is close to the degrada-
tion seen experimentally in Figure 11, where
throughput sinks from 3.13 GBps with no
skew to 2.53 GBps in the worst case.

T his research offers a novel solution to
the problem of big data computing effi-

ciency. The database community has spear-
headed software innovations to improve
performance efficiency of database manage-
ment systems running on commodity server
hardware, and several researchers have pro-
posed running big data analyses on field-
programmable gate arrays. However, this is
the first work to accelerate partitioning, a
generic kernel that is a critical piece of many
large data analyses. We have described a spe-
cialized database processing element and a
streaming framework that provide seamless
execution in modern computer systems and
exceptional throughput and power efficiency
advantages over software. These benefits are
necessary to address the ever-increasing
demands of big data processing.

Processing data with accelerators such as
HARP can alleviate serial performance bot-
tlenecks in the application and free up
resources on the server to do other useful
work. Because databases and other data-
processing systems represent a common,
high-value server workload, the impact of
improvements in partitioning performance
would be widespread.

The design shows how accelerators can be
seamlessly integrated into a CPU core. The

streaming framework decouples the micro-
architecture of the accelerator from the spe-
cifics of data layout and management. This
allows seamless integration of the accelerator
into existing software, as well as a clean
mechanism for handling context switches
and interrupts by saving and restoring just
the contents of the stream buffers.

The research demonstrates the potential
of data-oriented specialization. Moving data
through the memory subsystem and CPU
cache hierarchy consumes more than double
the energy of the computation itself.20 With
an application-specific integrated circuit
designed to specifically process tables in a
streaming fashion, the HARP system delivers
an order of magnitude improvement in
energy efficiency. The overall system design
also makes it easy to introduce other stream-
ing accelerators such as specialized aggrega-
tors, joiners, sorters, filters, or compressors to
expand both the use and benefits of this
approach. MICRO

..
References
1. A. Ailamaki et al., “DBMSs on a Modern

Processor: Where Does Time Go?” Proc.

25th Int’l Conf. Very Large Data Bases,

1999, pp. 266-277.

2. G. Graefe and P.-A. Larson, “B-Tree Indexes

and CPU Caches,” Proc. 17th Int’l Conf.

Data Engineering, 2001, pp. 349-358.

3. P. Saab, “Scaling Memcached at Facebook,”

12 Dec. 2008; https://www.facebook.com/

note.php?note id¼39391378919.

4. C. Kozyrakis et al., “Server Engineering

Insights for Large-Scale Online Services,”

IEEE Micro, vol. 30, no. 4, 2010, pp. 8-19.

5. L. Tang et al., “The Impact of Memory Sub-

system Resource Sharing on Datacenter

Applications,” Proc. 38th Ann. Int’l Symp.

Computer Architecture, 2011, pp. 283-294.

6. K.T. Malladi et al., “Towards Energy-Propor-

tional Datacenter Memory with Mobile

DRAM,” Proc. 39th Ann. Int’l Symp. Com-

puter Architecture, 2012, pp. 37-48.

7. Q. Deng et al., “MemScale: Active Low-

Power Modes for Main Memory,” Proc.

16th Int’l Conf. Architectural Support for

Programming Languages and Operating

Systems, 2011, pp. 225-238.

..

TOP PICKS

..

118 IEEE MICRO

8. N. Hardavellas et al., “Toward Dark Silicon

in Servers,” IEEE Micro, vol. 31, no. 4,

2011, pp. 6-15.

9. Y. Ye, K.A. Ross, and N. Vesdapunt,

“Scalable Aggregation on Multicore Process-

ors,” Proc. 7th Int’l Workshop Data Manage-

ment on New Hardware, 2011, pp. 1-9.

10. S. Blanas, Y. Li, and J.M. Patel, “Design and

Evaluation of Main Memory Hash Join Algo-

rithms for Multi-Core CPUs,” Proc. ACM

Sigmod Int’l Conf. Management of Data,

2011, pp. 37-48.

11. C. Kim et al., “Sort vs. Hash Revisited: Fast

Join Implementation on Modern Multi-Core

CPUs,” Proc. Very Large Data Bases, vol. 2,

no. 2, 2009, pp. 1378-1389.

12. D. Chatziantoniou and K.A. Ross, “Partitioned

Optimization of Complex Queries,” Informa-

tion Systems, vol. 32, no. 2, 2007, pp. 248-

282.

13. J. Cieslewicz and K.A. Ross, “Data Partition-

ing on Chip Multiprocessors,” Proc. 4th Int’l

Workshop Data Management on New Hard-

ware, 2008, pp. 25-34.

14. K.A. Ross and J. Cieslewicz, “Optimal Split-

ters for Database Partitioning with Size

Bounds,” Proc. 12th Int’l Conf. Database

Theory, 2009, pp. 98-110.

15. MySQL, “Date and Time Data Type Repre-

sentation,” 1997, 2014; http://dev.mysql.com/

doc/internals/en/date-and-time-data-type-

representation.html.

16. N.P. Jouppi, “Improving Direct-Mapped

Cache Performance by the Addition of a

Small Fully-Associative Cache and Prefetch

Buffers,” Proc. 17th Ann. Int’l Symp. Com-

puter Architecture, 1990, pp. 364-373.

17. HP Labs, “CACTI,” 2008; http://www.hpl.

hp.com/research/cacti.

18. L. Wu et al., “Navigating Big Data with

High-Throughput, Energy-Efficient Data Par-

titioning,” Proc. 40th Ann. Int’l Symp. Com-

puter Architecture, 2013, pp. 249-260.

19. H. Subramoni et al., “Intra-Socket and Inter-

Socket Communication in Multi-Core

Systems,” IEEE Computer Architecture

Letters, vol. 9, no. 1, 2010, pp. 13-16.

20. W.J. Dally et al., “Efficient Embedded

Computing,” Computer, vol. 41, no. 7,

2008, pp. 27-32.

Lisa Wu is a research staff member at Intel
Labs. Her research interests include com-
puter architecture, accelerators, and
energy-efficient computing on high-per-
formance computing and big data. Wu has
a PhD in computer science from Columbia
University, where she performed the work
for this article. She is a member of ACM
Sigarch.

Raymond J. Barker is a software engineer at
Google and an MS student in computer
engineering at Columbia University. His re-
search interests include application-specific
computer architecture and parallel algo-
rithms. Barker has a BS in computer engi-
neering from Columbia University. He is a
member of IEEE.

Martha A. Kim is an assistant professor in
the Computer Science Department at
Columbia University. Her research interests
include computer architecture, parallel
hardware and software systems, and energy-
efficient computation on big data. Kim has
a PhD in computer science and engineering
from the University of Washington. She is a
member of IEEE and the ACM.

Kenneth A. Ross is a professor of computer
science at Columbia University. His
research interests include database manage-
ment systems, particularly their perform-
ance on modern multicore machines,
GPUs, and other accelerator platforms.
Ross has a PhD in computer science from
Stanford University. He is a member of the
ACM.

Direct questions and comments about this
article to Lisa Wu, Intel, Building SC12,
3600 Juliette Ln., M/S 303, Santa Clara,
CA 95052; lisa@cs.columbia.edu.

...

MAY/JUNE 2014 119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

