
Harmony: Collection and Analysis of Parallel Block Vectors

Melanie Kambadur, Kui Tang, and Martha A. Kim
Columbia University, New York, NY

{melanie,martha}@cs.columbia.edu, kt2384@columbia.edu

Abstract

Efficient execution of well-parallelized applications is
central to performance in the multicore era. Program anal-
ysis tools support the hardware and software sides of this
effort by exposing relevant features of multithreaded appli-
cations. This paper describes parallel block vectors, which
uncover previously unseen characteristics of parallel pro-
grams. Parallel block vectors provide block execution pro-
files per concurrency phase (e.g., the block execution pro-
file of all serial regions of a program). This information
provides a direct and fine-grained mapping between an ap-
plication’s runtime parallel phases and the static code that
makes up those phases. This paper also demonstrates how
to collect parallel block vectors with minimal application
perturbation using Harmony. Harmony is an instrumenta-
tion pass for the LLVM compiler that introduces just 16-
21% overhead on average across eight Parsec benchmarks.

We apply parallel block vectors to uncover several
novel insights about parallel applications with direct con-
sequences for architectural design. First, that the serialand
parallel phases of execution used in Amdahl’s Law are of-
ten composed of many of the same basic blocks. Second,
that program features, such as instruction mix, vary based
on the degree of parallelism, with serial phases in particu-
lar displaying different instruction mixes from the program
as a whole. Third, that dynamic execution frequencies do
not necessarily correlate with a block’s parallelism.

1 Introduction
As multi-cores have come to dominate programmable ar-

chitectures from mobile to the datacenter, efficiency in par-
allel programming has seen significant attention from both
research and industry. Parallel profilers and measurement
tools have helped application parallelization, often by ex-
posing hard to identify parallel performance issues. Intel’s
VTune [13] and the gprof-based Kremlin [6] are examples
of such tools. While these tools are certainly useful to soft-
ware engineers, they don’t capture the whole picture of a
parallel program’s execution.

This paper introduces parallel block vectors, profiles

which establish a mapping between static basic blocks in
a multithreaded application and the degrees of parallelism
exhibited by the application each time a basic block exe-
cutes. These profiles enable the discovery of two previ-
ously unseen characteristics of parallel programs: they tease
apart serial and parallel portions of a program for individual
analysis, and they track the changes in parallelism of fine-
grained code regions. A parallel block vector consists of an
array of counters where each countercounterb,t indicates
how many times basic blockb was executed when the ap-
plication hadt threads running. From this profile it is easy
to find blocks that executed at a particular thread countt

(e.g., allb such thatcounterb,t > 0), or the thread counts
each time a particular blockb was executed (counterb,t for
all values oft).

This paper shows that with careful engineering effort,
parallel block vectors are neither complex nor expensive to
gather even at such fine granularity. We demonstrate Har-
mony, an LLVM compiler pass that instruments a multi-
threaded application to gather parallel block vectors. For
eight Parsec benchmarks, instrumentation using Harmony
incurs an average of16% application slowdown and has
minimal resource overhead as measured by register spills
and cache miss rates.

The new parallel program characteristics uncovered by
parallel block vectors can be used to improve multithreaded
execution in a variety of ways. We demonstrate several dis-
coveries made via analysis of parallel block vectors that are
relevant to microarchitectural design. For example in Sec-
tion 5.2, we use parallel block vectors to separate the par-
allel and serial code portions of several applications, dis-
covering that the instruction mixes for these subsets of code
differ, often significantly, from the overall program instruc-
tion mix. In the context of heterogeneous processors, such
as those analytically motivated by Marty and Hill [11], this
information can be applied to tailor heterogeneous cores to
better suit their anticipated parallel and serial workloads.
Parallel block vectors can also be applied to a variety of
other multi–threaded performance issues. We suggest ap-
plications in software engineering, application scheduling,
and compilers research in Section 6.

In summary, this paper makes the following three contri-
butions:

• Defines parallel block vectors, a novel way of measur-
ing parallel program performance that can reveal pre-
viously unseen multithreaded program features.

• Describes Harmony, a tool that allows fast (only 16%
slower than runtime) and accurate collection of paral-
lel block vectors via compiler inserted instrumentation
and dynamic profiling.

• Demonstrates three applications of parallel block vec-
tors, discovering that: (1) In many cases the black and
white scenario of Amdahl’s Law, in which code is ei-
ther purely serial or purely parallel, does come to pass,
with blocks displaying strong affinities for either se-
rial or parallel execution. However, there are also ex-
ceptions in which substantial numbers of basic blocks
run both serially and in parallel across different exe-
cutions. (2) Program features, such as instruction mix
and basic block size, vary across blocks that can be
categorized into different degrees of parallelism. No-
tably, features of identifiably serial blocks often dif-
fer significantly from whole program features. (3) The
frequency of execution of a block does not necessarily
correlate to parallelism or serialism. This suggests that
when “hotspot” analysis is used in the context of pro-
cessor design, architects should consider parallelism as
a factor in their analysis.

The remainder of this paper discusses these contributions
in further detail. Section 2 defines parallel block vectors
and shows a sample parallel block vector for a simple ma-
trix multiply application. Section 3 describes Harmony, a
static instrumentation tool to collect the profiles, and Sec-
tion 4 quantifies the low overheads and minimal application
perturbation due to profiling. Section 5 uses analysis of par-
allel block vectors to make our three architectural discover-
ies, and Section 6 discusses ideas for future uses of parallel
block vectors.

2 Parallel Block Vector Profiles
Many profiling tools collect runtime statistics from the

perspective of processes or threads [13, 12, 32, 15], report-
ing the number of threads running for the duration of a pro-
cess or the breakdown of serial and parallel execution time.
Parallel block vectors report on a program’s parallel behav-
ior from the perspective of a basic block. A parallel block
vector consists of one histogram for each basic block, indi-
cating the degree of parallelism exhibited by the application
each time the block was executed.

Figure 1 shows a parallel block vector profile for a sim-
ple, unoptimized matrix multiplication program. The pro-
file shown in the table is a matrix with one row for each

#define NDIM 1000
double a[NDIM][NDIM];
double b[NDIM][NDIM];
double c[NDIM][NDIM];

void worker(int me,int p,int n) {
int i,j,k;
double sum;
i = me;
while (i < n) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < n; k++)

sum = sum+a[i][k]*b[k][j];
c[i][j] = sum;

}
i += p;

}
}

int main(int argc, char *argv[]) {
// Variable declaration and
// initialization ommitted
n = // number of threads, here 4
threads = (pthread_t*)

malloc(n*sizeof(pthread_t));
pthread_attr_init(&pthread_custom_attr);
for (i = 0; i < n; i++)

pthread_create(&threads[i],
&pthread_custom_attr,
worker, ...);

for (i = 0; i < n; i++)
pthread_join(threads[i], NULL);

free(arg);
return 0;

}

Nominal Thread Count
1 2 3 4 5

main:9 0 0 0 0 1
worker:7 0 14 14 16 956
worker:6 606 146K 12K 16K 955K
worker:5 607K 14.6M 12.8M 16.1M 955M
worker:4 607 146K 12K 16K 955K
worker:3 1 14 14 16 955
worker:2 0 1 1 1 1
worker:8 0 1 1 1 1
worker:1 1 1 1 1 0
worker:0 1 1 1 1 0
main:7 3 0 0 1 0
main:6 1M 0 0 0 0
main:5 1K 0 0 0 0
main:4 1K 0 0 0 0
main:3 1 0 0 0 0
main:2 1 0 0 0 0
main:1 1 0 0 0 0
main:0 1 0 0 0 0

Figure 1:Parallel block vector for matrix multiplication.
For each basic block in an application, top, the profile, bot-
tom, indicates the block execution frequency at each possi-
ble thread count (i.e., degree of parallelism).

static basic block and one column for each possible degree
of concurrency. In this example, the program created four
threads, which in addition to the initial thread, makes at
most five concurrent threads. Each cell in the profile gives
the number of dynamic executions of the given block at the
given degree of parallelism. To help survey large applica-
tions, we also use the heatmap visual representation shown
by the shading in Figure 1.

Parallel block vectors create two new opportunities for
better understanding parallel programs. First, they allow
identification of specific basic blocks that run at a particu-
lar thread count. For example, examining the first column
in Figure 1 reveals that fourteen blocks make up the serial
phases of matrix multiplication’s execution, with main:6
and worker:5 dominating the dynamic mix. Second, a user
can monitor regions of interest in a program to see the phase
or phases in which the code executed. For example, blocks
worker:4-6 in Figure 1 correspond to the inner multiplica-
tion loop, a critical region in terms of performance. As one
would hope, the profile reveals that this code is largely exe-
cuted at high thread counts.

There are multiple ways to count threads when determin-

Increasing cost

• Program start: Allocate memory for profile, one per thread up toMAX THREADS
• Program end: Aggregate per-thread profiles, write resulting profile to file

• Thread create: Increment thread count(23 instructions)
• Thread exit: Decrement thread count(18 instructions)

• Blocking call entry: Same as thread entry (only when maintaining effective thread count)
• Blocking call exit: Same as thread exit (only when maintaining effective threadcount)

• Basic block execution:Increment PBV cell for block at current thread count(3 instructions)

Increasing frequency

Figure 2: Harmony instrumentation points. Profiler action is taken upon various runtime events. Careful engineering
offloads expensive work to the least frequent events, in particular program start and finish which do not overlap with the exe-
cution of the program itself. This results in minimal profiling work at the most frequent events (i.e., basic block executions),
reducing the profiling overhead and minimizing perturbation.

ing the parallel phase of an application.Nominal thread
countincludes all created threads regardless of whether they
are running or blocked.Effective thread countexcludes
blocked threads and counts only runnable threads.Run-
ning thread countincludes only the runnable threads that
have actually been granted access by the operating system
to a processor. We collect profiles for nominal and effec-
tive thread counts, but do not count running threads for two
reasons. First, running thread count is strongly dependent
on the availability of hardware resources and the behavior
of the scheduler, thus revealing more about those two as-
pects of the system than the application. Second, counting
running threads requires polling the OS, which is likely to
substantially slow and perturb the execution of the program
under measurement.

3 Harmony: Efficient Collection of Parallel
Block Vectors

We now describe Harmony, an instrumentation pass for
LLVM [19] to generate parallel block vectors. We se-
lected compile-time instrumentation for Harmony for three
reasons. First, parallel block vectors require dynamic in-
formation such as basic block execution frequency, thread
count, and timing information which is not available via
static analysis. Second, unlike dynamic instrumentation
frameworks such as Pin, compile-time instrumentation adds
no additional runtime overhead beyond the instrumentation
code itself. It is particularly important to keep overheads
low when profiling parallel applications as shifts in the rel-
ative timing of events can perturb the behavior of the pro-
gram. Finally, with compile-time instrumentation, portabil-
ity comes for free, making it trivial to collect profiles on any
architecture or language supported by the compiler.

This section describes the architecture of Harmony
and discusses the efforts undertaken to minimize pro-
file collection overhead thereby maintaining profile ac-

curacy. The pass is intended to be the last pass exe-
cuted, after the program has been fully optimized and
the final program control-flow graph (CFG) has been
set. Harmony is available as an open-source tool at
http://arcade.cs.columbia.edu/harmony.

3.1 Injecting Instrumentation

To collect parallel block vectors, Harmony must take ac-
tion at several program events, as summarized in Figure 2.
At program start the profiler must allocate and initialize a
profile, and at program finish the profile must be written
to a file. At thread creation and exit, Harmony must inject
code to increment and decrement the nominal thread count.
When tracking effective thread count, the counter must also
be decremented upon entry and incremented upon exit from
any blocking call, such as a lock acquire. Lastly, each basic
block execution must be accompanied by an increment of
the appropriate entry in the profile matrix.

Harmony injects instrumentation in two different ways.
For tracking basic block executions, Harmony adds instruc-
tions directly into the body of a basic block, as illustratedin
Figure 3. The same goes for program entry and exit, where
Harmony inserts calls to profile initialization and cleanup
routines (not shown). For the remaining events, Harmony
interposes on relevant thread library calls as illustratedin
Figure 4. At present, the tool supports only Pthreads library
calls, and requires only that programs includeharmony.h
in place ofpthreads.h.

3.2 Strategies for Minimizing Perturbation

Adding instrumentation to a parallel program risks per-
turbing program behavior, potentially compromising the ac-
curacy of the profile. While some perturbation is unavoid-
able, we found that careful engineering significantly re-
duces the overhead of profile collection.

As basic block executions are by far the most fre-
quent event the profiler instruments, we focused our op-

void sample(uint32_t bb_id) {
bucket_t *b = *ptr_specific_col +

bb_id*PROF_BUCKET_SIZE;
(*b)++;

}

load the pointer to pointer to my column
movl %gs:ptr_specific_col@NTPOFF, %edx
load the pointer to my column
movl (%edx), %edx
increment counter for BBL1 at specific_col+4
incl 4(%edx)

Figure 3: Direct instrumentation example. Each basic
block is augmented to record its execution at the current
degree of parallelism. The additional three instruction use
only one register and do not induce any register spills.

// intercept potentially blocking call
#define pthread_mutex_lock(a...) \

BLOCKING_CALL(pthread_mutex_lock(a))

// effective thread count drops on entry
// and rises on upon completing
#define BLOCKING_CALL(exp) ({ \

int rv; \
__sync_sub_and_fetch(&(effectiveThreadCount), 1); \
rv = exp; \
__sync_add_and_fetch(&(effectiveThreadCount), 1); \
rv; })

Figure 4: Thread library wrapper example. Here the
instrumentation decrements and increments the effective
thread count upon upon entry to and exit from of a blocking
call respectively.

timization efforts there. Each time a basic block exe-
cutes, the instrumentation must read the current thread
count and use that value along with the basic block ID to
index the profile matrix and increment one counter (i.e.,
profile[currentThreadCount][bbid]++). Har-
mony takes the following steps to streamline this computa-
tion:

• Becausebbidwill be changing much more frequently
thancurrentThreadCount, the profile matrix is
laid out in a cache-friendly, column-major fashion that
places profile entries for different basic blocks at the
same degree of parallelism at adjacent addresses in
memory.

• Significant portions of the address calculation are fac-
tored out of the basic blocks themselves. Specifically,
the column address offset for the current thread count
need only be re-calculated each time the thread count
changes and not for each basic block execution. All
that remains of the address calculation for each basic
block is to compute the offset within the profile col-
umn.

• Finally, because the target programs are parallel, mul-
tiple threads will be updating the profile concurrently.
Rather than guarding each counter in the profile ma-
trix with a lock, which would introduce substantial
synchronization overhead, we allocate a private profile
matrix for each thread, and aggregate the per-thread
profiles only after the program has finished executing.

Collectively, these optimizations result in the small per-
basic block overhead of the three instructions shown in Fig-
ure 3.

3.3 Mapping Profiles Back to Application Code

To ensure that profiles can be mapped back to the orig-
inal application code, Harmony annotates both the profiles

and the LLVM assembly file with unique basic block IDs. In
post-processing these two files can be cross-referenced for
further analysis as in our instruction mix case study (Sec-
tion 5.2). Though we do not implement it for these studies,
this labeling scheme could be coupled with debug symbols
to link the profile all the way back to source code.

3.4 Limitations

At present Harmony is usable only on Pthreads applica-
tions that LLVM can compile. The tool could be extended
to support other parallelization libraries (e.g., OpenMP),
and the general architecture could be readily ported to other
compilers.

4 Runtime Impact of Harmony
Dynamic analysis risks altering the timing, and with

it the behavior, of a parallel program in a way that may
compromise the accuracy of the gathered information. For
example, slowing critical sections will increase lock con-
tention, and, conversely, slowing non-critical sections will
reduce lock contention. It is thus important to carefully ex-
amine profiling’s impact on the original program.

In his 1991 paper,Event-based Performance Perturba-
tion: A Case Study, Allen Maloney [20] listed the three pri-
mary sources of program perturbation: execution of addi-
tional instructions and their resulting execution slowdown,
changes in memory references patterns, and register pres-
sure. As outlined in Section 3.2, Harmony takes a num-
ber of steps to minimize the impact on program behavior.
In this section we evaluate the profiler’s impact on each of
these three metrics.

4.1 Execution Time Overhead

First, we compare the execution time of applications
compiled with and without Harmony’s instrumentation. In
both cases the-O3 flag is set to turn on maximal compiler
optimizations. The machine used for all experiments de-
scribed in this paper has 4 2.0 GHz cores, 3.3GB of RAM,

and is running Linux Ubuntu version 8.04. We use Har-
mony to collect parallel block vectors for eight applications
from Parsec [4], a suite of non-HPC multithreaded bench-
marks.

All runtimes are the average of 20 program runs. For
each application the profile collection times were normal-
ized to an uninstrumented baseline. Figure 5 plots the pro-
file collection overheads. Nominal thread count profiling
added16% on average while effective thread count profil-
ing added slightly more overhead at21%. The additional
overhead is expected due to the additional thread counter
activity. As Figure 5 indicates,3% of these totals are at-
tributable to time spent writing the profile to a file after the
program has finished. Thus, the effective overheadsduring
program executionare13% and18%, respectively.

Relative to similar tools, these overheads are modest. For
example, ThreadScope, a tool for tracing runtime parallel
events using the Haskell GHC compiler [17], incurs 10%-
25% overhead. Quartz, a gprof like tool that uses sampling
to monitor threads, increases program run times by 70% [1].
The popular (but heavier-weight) runtime binary instrumen-
tation platform, Pin, incurs a100 − 400% increase in exe-
cution time for basic block counting alone [3].

It is interesting to note that two applications,dedup and
fluidanimate, spend significantly more time maintain-
ing an effective thread count than maintaining a nominal
thread count. This differential in activity between the two
counters becomes significant when we compare the result-
ing profiles later in Section 5.1.

4.2 Storage Resource Contention

The last two sources of perturbation in Maloney’s list
address increased resource pressure caused by instrumenta-
tion. For Harmony we see a slight —7.5% on average —
increase in register spills. However, for these applications,
the additional spills were confined to the profile setup and
cleanup activities which occur prior to and after the execu-
tion of the program itself. Most importantly, the instrumen-
tation code in each basic block didnot induce spills.

As measured by Cachegrind [34], the instrumentation in-
troduces negligible cache perturbation. In the L1 instruction
and data caches the miss rate increased by at most 0.06%
and 0.2% respectively. There was no measurable impact on
the hierarchy beyond the L1 structures (i.e., L2 miss rates
were unchanged).

5 Applications of Parallel Block Vectors
We now carry out three novel analyses of our bench-

marks, each enabled by parallel block vectors. Figure 6
shows visual representations of the profile of each of the
eight Parsec benchmarks. Recall from Figure 1 that each
row corresponds to a static basic block and each column to
a nominal thread count. For space reasons we show the full
heatmaps only for nominal thread counts, though in the fol-

lowing sections we will analyze both nominal and effective
thread count profiles.

From these profiles, we see that in several ap-
plications (namelybodytrack, dedup, facesim,
fluidanimate, and streamcluster) basic blocks
display a strong affinity for either serial or parallel
phases. The remaining applications (blackscholes,
swaptions andx264) by contrast have significant por-
tions which execute at mixed thread counts, during both se-
rial and parallel phases.

It is well known that the serial portions of an application
limit parallel speedups [11], but what exactly do those serial
portions look like? Are they amenable to acceleration? We
will explore these questions in the following sections, be-
fore closing with a discussion of other applications of par-
allel block vectors.

5.1 Serial and Parallel Application Partitions

Knowing how much of a program runs in parallel and
how much runs serially is useful for many purposes. Tools
such as Intel’s VTune Amplifier XE [13] identify the se-
rial fraction of an application’s runtime so that software en-
gineers can improve the parallelization of their programs.
Such metrics are also useful when estimating the scala-
bility of a particular parallelization according to Amdahl’s
Law [11].

Parallel block vectors make it possible not only to quan-
tify the serial portion of a program, but to map that region
back to the specific basic blocks that comprise it. To get
this information we classify each basic block into one of
three categories:serial (i.e., never executed with a thread
count greater than one),parallel (i.e., always executed with
a thread count greater than one) ormixed(i.e., sometimes
executed in serial regions, other times in parallel regions).

From an architect’s perspective, the pure serial blocks
make natural targets for specialized serial processors (fur-
ther discussed in Section 5.2) or accelerators (Section 5.3).
The mixed blocks, which run both in parallel and serially,
are likely of interest to all system designers. They might
represent areas in the application where there were commu-
nication overheads or other forms of architectural resource
contention. Identifying the mixed blocks allows their ex-
ecution to be improved with better scheduling algorithms,
additional hardware resources, or code transformations.

Figure 7 shows the breakdown of static and dynamic ba-
sic blocks by class (serial, mixed, or parallel). We observe
that significant portions of several applications are neither
purely serial nor purely parallel, but rather belong to both
regions (the mixed class). This is true of both nominal
and effective thread counts. The trends are similar but even
more pronounced when counting dynamic basic block exe-
cutions. This means that when we talk about Amdahl’s law
and serial and parallel phases of a program, those phases

0 %

10 %

20 %

30 %

40 %

50 %

blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

swaptions

x264
blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

swaptions

x264

O
ve

rh
ea

d Keep Thread Count
Increment Histogram

Write Profile to File

Profiling (Effective Threads)Profiling (Nominal Threads)

Figure 5:Low overhead of instrumentation. Program slowdown due to profile collection ranges from 2% to 44% with an
average overhead of 18%.

.

 1 2 3 4 5

B
B

Ls

Nominal TC

blackscholes
(45 BBLs)

 1 2 3 4 5 6

Nominal TC

bodytrack
(2239 BBLs)

 1 2 3 4 5 6

Nominal TC

bodytrack
(2239 BBLs)

 1 5 9 13

Nominal TC

dedup
(353 BBLs)

 1 5 9 13

Nominal TC

dedup
(353 BBLs)

 1 2 3 4

Nominal TC

facesim
(3547 BBLs)

 1 2 3 4

Nominal TC

facesim
(3547 BBLs)

 1 2 3 4 5

Nominal TC

fluidanimate
(374 BBLs)

 1 2 3 4 5

Nominal TC

fluidanimate
(374 BBLs)

 1 2 3 4 5

Nominal TC

streamcluster
(286 BBLs)

 1 2 3 4 5

Nominal TC

streamcluster
(286 BBLs)

 1 2 3 4 5

Nominal TC

swaptions
(147 BBLs)

 1 2 3 4 5

Nominal TC

swaptions
(147 BBLs)

 1 2 3 4 5

Nominal TC

x264
(3054 BBLs)

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

of

 E
xe

cu
tio

ns

 1 2 3 4 5

Nominal TC

x264
(3054 BBLs)

Figure 6: Parallel block vectors for Parsec. These heatmaps are a visualization of the profiles produced by Harmony.
For the given application, they show the number of times (shading) each static block (row) was executed at each degree of
parallelism (column).

often do notcorrespond to different portions of the appli-
cation. One hypothesis is that such blocks are the result of
library code which is called both from the serial and parallel
phases.

Returning to the serial/mixed/parallel classifications, we
can also clearly tell which applications are the most parallel.
For example, from the static nominal view,bodytrack
andfacesim seem to be equally parallel. However, from
the dynamic effective profiles, we see thatbodytrack
has more blocks actually running in parallel, whereas
facesim apparently suffered from blocking threads and
its parallel blocks were less frequently executed than its se-
rial blocks. In the following section, we will look in more
depth at the content of blocks in each of these classes.

5.2 Program Features by Degree of Parallelism

Recent interest in heterogeneous multicore architectures
spans not only the architecture community but operating
systems, high-performance computing, programming lan-
guages, and others [14, 37, 18, 23, 2, 8, 27]. The prin-
ciple idea behind heterogeneous processing is specializa-
tion: different cores on a heterogeneous machine can ad-
dress the varied compute needs of modern workloads while
maximizing hardware performance and efficiency. For ex-
ample, when portions of a program cannot be adequately
parallelized, an aggressive, out of order, no holds barred
processor might be employed to reduce execution time.

If heterogeneous cores are meant to address the special-
ized needs of certain portions of the application, it is natu-
rally important to understand what these processors should

 0

 0.5

 1

blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

swaptions

x264
blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

swaptions

x264

%
 S

ta
tic

 B
B

Ls

Static Execution Count

Effective Thread CountNominal Thread Count

 0

 0.5

 1

blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

swaptions

x264
blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

swaptions

x264

%
 D

yn
am

ic
 B

B
Ls

Dynamic Execution Count

serial
mixed

parallel

Effective Thread CountNominal Thread Count

Figure 7:Classifying basic blocks by parallelism.These graphs show the percentage of blocks which execute only serially
(serial), blocks which execute both serially and in parallel (mixed), and blocks which only execute in parallel (parallel) for
each application, for both nominal and effective thread counting, and for both static and dynamic block executions.

be specialized to. Parallel block vectors can assist by dis-
tinguishing features of parallel and serial phases. For this
analysis, we will continue to use thealways serial, always
parallel, ormixedclassification introduced in Section 5.1 in
which every block belongs to exactly one class.

Figure 8 compares the dynamic instruction mixes of each
of these three categories, as well as for the program as a
whole. All of the X86 opcodes that occurred in the appli-
cation were classified into one of eight categories: loads
and stores, loads of effective addresses, integer arithmetic,
floating point arithmetic, comparisons, conditional control
transfers, unconditional control transfers, and synchroniza-
tion.

We observe that for most applications, serial basic blocks
display significantly different instruction mixes from the
overall program. This indicates an opportunity for archi-
tects to exploit, when designing the microarchitecture of
aggressive cores for heterogeneous CMPs. Consider the
blackscholes application. Across the whole program,
floating point operations account for more than 20% of the
dynamic instructions. If this were the only instruction mix
considered, as is currently the case, then the aggressive pro-
cessor for serial regions might waste space and expense un-
necessarily on floating point units, when we can see from
the graph that the serial blocks actually require fewer float-
ing point operations than the program as a whole. Instead,
the serial phases ofblackscholes have a higher con-
centration of control and integer arithmetic, suggesting that
resources would be better spent on the branch predictor, for
example.

The data in Figure 8, shows such a pattern in each of
the benchmarks. In every case, either the serial or parallel
portions (and sometimes both) have substantially different

instruction mixes than the application as a whole. How-
ever, across these applications, there does not appear to be
a consistent pattern ofhow the instruction mixes change.
For example, the serial portions inblackscholes had
reduced need for floating point units, while the serial por-
tions ofx264 show increased rates of unconditional con-
trol transfers. It is not immediately obvious how hardware
can or should exploit such patterns. We believe that this
direction merits further investigation, starting with a more
comprehensive review of the application space.

Just as opcodes vary, the state upon which the serial and
parallel portions of a program operate varies relative to the
overall program. Figure 9 shows the memory interactions
of the three parallelism classes. As with opcodes, the com-
ponent parts of the application show different mixes than
the application as a whole.

5.3 Hotspot Analysis Using Parallel Block Vectors

The previous section suggests an approach for using par-
allel block vectors to determine the applicability of a spe-
cialized processor to particular code regions. An extreme
form of specialized processor, accelerators have shown
great promise in reducing power, saving space in embedded
systems, and improving performance for target programs.
The following case study explores how Harmony can help
architects quantify the potential performance gains of their
accelerator designs, in particular how parallel block vectors
can enhance hotspot analysis for parallel applications.

Figure 10 plotsaverage degree of parallelismagainst
dynamic basic block executions for block in each applica-
tion. The average degree of parallelism of a block is sim-
ply the average thread count for each block weighted by
the block’s execution frequency at each count. The scatter

 0

 0.2

 0.4

 0.6

 0.8

 1

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

Parallel

M
ixed

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

%
 o

f T
ot

al

ld/st
lea

arith (int)
arith (fp)

stack
cmp

cond CT
uncond CT

sync

x264swaptionsstreamclusterfluidanimatefacesimdedupbodytrackblackscholes

Figure 8:Opcode mix by class.Instruction mixes for the entire program compared with the mixes for each basic block class
(serial, parallel, and mixed). In all applications, the instruction mixes for both purely serial and purely parallel blocks differ
significantly from whole program mixes.

 0

 0.2

 0.4

 0.6

 0.8

 1

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

Parallel

M
ixed

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

%
 o

f T
ot

al

FP+Mem
Int+Mem
FP+Reg
Int+Reg

x264swaptionsstreamclusterfluidanimatefacesimdedupbodytrackblackscholes

Figure 9: Memory interaction by class. The proportion of memory operations for serial and parallelbasic blocks differ
from the proportion in the program as a whole.

plots reveal that the hottest blocks are not always the most
parallel ones. Instreamcluster for instance, many of
the hottest blocks have an average degree of parallelism of
one. Generally, the hottest blocks seem to be split between
blocks which execute exclusively serially and blocks which
execute at or near the maximum degree of parallelism. This
data indicates that not only are there hotspots, possibly
amenable to acceleration, but that one should not assume
anything about whether the hotspots belong to parallel or
serial phases. Some code simply cannot be parallelized. As
multicore architectures scale to larger core counts, thesese-
rial portions of runtime dominate total execution times. The
acceleration of serial sections then becomes critically im-
portant. So, as a special case of hotspot analysis, we look
more closely at the serial blocks, and ask the question,are

serial code segments amenable to targeted accelerator op-
timizations?

Taking the serial basic blocks identified in Section 5.1
(see Figure 7), we attribute dynamic serial execution fre-
quencies to different percentages of the serial blocks. Fig-
ure 11 (left) shows that for six of the eight applications,
75% of the serial execution is attributable to less than 10%
of the basic blocks. This data corroborates what other
projects [35] have seen, that accelerators can effectivelyac-
celerate the serial parts of a parallel application.

Processor designers might also be interested in how
amenable parallel blocks are to targeted hardware opti-
mizations. Figure 11 (right) shows the execution coverage
of parallel phases by purely parallel basic blocks. With
the exception ofblackscholes andswaptions, ap-

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5#
D

yn
am

ic
 B

lo
ck

 E
xe

cs

blackscholes

 1 2 3 4 5 6

bodytrack

 1 5 9 13

dedup

 1 2 3 4

facesim

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5#
D

yn
am

ic
 B

lo
ck

 E
xe

cs

Avg. Nominal Threads

fluidanimate

 1 2 3 4 5

Avg. Nominal Threads

streamcluster

 1 2 3 4 5

Avg. Nominal Threads

swaptions

 1 2 3 4 5

Avg. Nominal Threads

x264

 1 2 3 4 5

Avg. Nominal Threads

x264

Figure 10:Hottest blocks are not always the most parallel blocks.Each static basic block’s weighted average nominal
thread count was calculated and then plotted against its total number of dynamic executions. The graphs show that the hottest
blocks are primarily split between those that execute only serial and those that execute near the max degree of parallelism.

%
 D

yn
am

ic
 B

lo
ck

 E
xe

cu
tio

n

% Static Serial BBLs

Hot Serial Blocks

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

% Static Parallel BBLs

Hot Parallel Blocks

blackscholes
bodytrack

dedup
facesim

fluidanimate
streamcluster

swaptions
x264

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

% Static Parallel BBLs

Hot Parallel Blocks

blackscholes
bodytrack

dedup
facesim

fluidanimate
streamcluster

swaptions
x264

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

Figure 11:Few basic blocks represent large portions of serial and parallel runtime. For basic blocks that were determined
by parallel block vectors to always execute serially (left)or in parallel (right), percentages of runtime execution are attributed
to static basic blocks. For most applications, a small number of blocks represents a large fraction of the total runtime.

proximately 5% or fewer of parallel blocks are responsi-
ble for 75% of dynamic parallel blocks. The reason that
blackscholes andswaptions do not show a steep
hotspot curve is that they had very few parallel blocks to
begin with; three and five, respectively. As with serial code,
we find that parallel parts of the applications exhibit pro-
nounced hotspots.

In the above experiments, we examine hotspots in terms
of basic blocks, but only because this was the most natural
first choice given that it matched our profile granularity. We
note that similar experiments can easily be run at hot func-
tion or hot instruction granularity if we statically analyze the
basic blocks and source program after running Harmony. It

would also be possible, with some additional effort, to map
hot call graph or dataflow paths to parallelism.

6 Other Applications and Future Work

Parallel block vectors are flexible, light-weight and ap-
plicable for a range of multi-disciplinary uses. We have
already discussed several analyses directly relating to hard-
ware design. Here we discuss other applications spanning
software engineering, operating systems, compilers, and
machine learning. These ideas are meant to demonstrate
the diverse utilities of parallel block vectors, and to inspire
readers to find further uses.

6.1 Applications in Software Engineering

Writing parallel software is a challenging task. One par-
ticular challenge lies in verifying that applications consis-
tently run as the developer expects. Harmony could assist
this verification process by checking that particular partsof
the program run at the degree of parallelism intended by the
developer. For example, a language could introduce asser-
tions to declare that a specific code region should never run
when the thread count is greater than one. This might be a
critical section, or it might be any other code region that a
developer expects to execute serially. Then, Harmony could
be modified to insert runtime checks and flag them for pro-
grammer inspection.

Another concurrency check that Harmony could assist
with is the identification of code regions withanomalous
parallelism. If a certain code region, say a function, is
found to run serially 99% of the time and in parallel 1%
of the time, this anomaly might signify a concurrency bug,
or at least a potential mismatch in programmer intent and
runtime behavior and could also be flagged for programmer
review.

6.2 Applications in Operating Systems Research

As we observed in Section 5.1, many applications
have a significant fraction of mixed parallelism blocks.
These blocks might be indicative of poor operating sys-
tem scheduling. Further examination of such mixed blocks
could lead to improvements in scheduling policy.

6.3 Applications in Compilers Research

If compilers are knowledgeable about the degree of par-
allelism at which a basic block might run at, optimization
selection could factor in this information. Multi-threaded
programs might initially be optimized as if they were to be
executed in serial, then run with Harmony profiling. The
parallel block vectors produced could be used by a compiler
to apply different optimization strategies to parallel andse-
rial code. For example, if a heterogeneous CMP has in-
order parallel cores, the compiler might expend more effort
on instruction scheduling.

Profile driven re-compilation could also be employed
when targeting code to specialized processors in a hetero-
geneous architecture. An initial run of an application with
Harmony profiling followed by instruction analysis could
determine the best processing unit on which to run a par-
ticular code region. Re-compilation could then prepare the
application to run on specialized cores, potentially with dif-
ferent instruction set architectures (ISAs).

Mapping measured parallelism to basic blocks might
also help a compiler improve program parallelism. Parallel
classifications like always serial, always parallel, and mixed
could be mapped to control flow graphs. The attribution of
parallelism to CFGs might highlight certain graph patterns

where opportunities for further parallelization exist.

6.4 Machine Learning

We chose the always serial, always parallel, mixed clas-
sifications because they are appropriate to the microarchi-
tectural design case studies presented. However, blocks
could be classified in a multitude of ways. For example, we
identified blocks which always ran in parallel, but did not
distinguish blocks which were highly parallel from blocks
which were only somewhat parallel. That is, we did not sep-
arate blocks which ran concurrently with five other threads
active from those that ran with one other thread. Different
classifications might be useful depending on the profiling
goal and the type of application being measured. Unsu-
pervised learning could determine useful parallel classifi-
cations, leading to more interesting analyses and to further
insights for a variety multi-threaded applications.

7 Related Work

To the best of our knowledge, Harmony is the first tool
that dynamically records parallelism and maps it back to ba-
sic blocks in the application. However, a number of other
tools dynamically measure program parallelism and profile
thread activity, use the LLVM compiler, or collect basic
block-granularity performance data.

Parallelism Analysis Tools. Kremlin by Garcia et al. [6]
reboots the classic gprof [7] for the multicore era using hi-
erarchical critical path analysis to help users identify ap-
plication hotspots that would benefit from parallelization.
Quartz [1] is an older tool with similar goals; it computes
normalized processing times on SMPs for functions us-
ing statistical sampling. TAU [29] is a flexible but com-
plex parallel performance evaluation environment for multi-
node HPC systems. Intel’s Parallel Amplifier [12] and
VTune Amplifier XE [13] allow software engineers to ex-
amine performance and scalability of programs and to vi-
sualize program hotspots and thread activity. McLaren’s
QProf [21] unites fine-grained timing measurements with
estimates to provide detailed timings of multi-threaded pro-
gram events. Tallent and Mellor-Crummey use sampling to
identify program overhead and identify serialization in Cilk
programs [33]. The Sun Studio performance tools identify
lock contention, load imbalance, and memory contention in
multi-threaded programs [15]. PGPROF from the Portland
Group allows users to profile OpenMP and MPI programs
and to analyze application scalability [32]. Additional
OpenMP parallel performance tools include a runtime API
for parallel profiling described by Hernandez et al. [10],
and ompP [5]: a tool modeled off of mpiP [36] that iden-
tifies inefficient regions in OpenMP through source code
instrumentation that counts OpenMP construct executions.
The Pin binary instrumentation tool [26] can monitor a va-
riety of performance metrics in parallel programs [3]. It is

best suited to applications where perturbation will not affect
measurements, because it can cause significant timing over-
heads. Several parallelism analysis tools have been built on
top of the Pin framework. PinPlay [24], for example, uses
Pin to dynamically replay multi-threaded programs with the
goal of fixing concurrency bugs. The CilkView Scalability
Analyzer by He et al. [9] examines the dependencies in a
program to estimate its parallelism using Pin to collect per-
formance metrics serially. Finally, Moseley et al. [22] build
a Pin tool that looks for loop behaviors that might indicate
easy opportunities for parallelization.

LLVM Performance Tools. We build Harmony on top
of the LLVM Compiler Framework. LLVM comes with
several instrumentation features including block, edge and
path profiling [19]. Like us, other teams have built cus-
tom instrumentation passes. For example, VMAD by Jim-
borean et al. [16] extends LLVM with a pass to support an
instrumentation framework that can gather memory–access
traces. Rane and Browne analyze memory traces via LLVM
instrumentation [25], and Serebryany et al. use LLVM in-
strumentation for dynamic race detection [28].

Basic Block Profiling. Others have also profiled at the
fine granularity of basic blocks. For example, Sherwood
et al. [30] use Basic Block Vectors to identify similar in-
tervals of execution in a program, and Smith’s Pixie [31]
tracer identifies basic block boundaries in MIPS code to
count block executions and to monitor the number of branch
instructions taken.

8 Conclusion
Like puzzles turned sideways, sometimes new perspec-

tives can yield new insights. Unlike existing profiles which
examine parallel programs from the perspective of a thread
or process, parallel block vectors collect runtime statistics
by basic block laterally by parallelism phase. Parallel block
vectors show which parts of a program belong to the se-
rial and parallel phases of execution and in what propor-
tion. Collection of parallel block vectors is fast. This pa-
per demonstrates Harmony, a compile-time instrumentation
pass to collect runtime profiles with just 16-21% overhead.
No manual code modification is required by the user, and
profiles are architecture independent.

Fast collection coupled with detailed dynamic informa-
tion about program behavior makes parallel block vectors
broadly useful. This paper examined three ways paral-
lel block vectors can shed light on hardware and micro-
architectural design. The first identified basic blocks which
do not fit the mold of Amdahl’s pure parallelism and se-
rialism and instead exhibit a mix of the two. The second
demonstrated how parallel block vectors can uncover dif-
ferences in program features at different degrees of paral-
lelism. Finally parallel block vectors reveal that parallelism
does not necessarily correlate with basic block execution

frequencies.

9 Acknowledgements
This work has been made possible through the gen-

erous support of the National Science Foundation (CNS-
1117135). We also thank Stephen Edwards and the anony-
mous reviewers for their comments on the manuscript.

References
[1] T. E. Anderson and E. D. Lazowska. Quartz: a tool for

tuning parallel program performance.SIGMETRICS
Performance Evaluation Review, 18:115–125, 1990.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures.Concurrency and
Computation: Practice and Experience, 2010.

[3] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor,
K. Hazelwood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and
A. Tal. Analyzing parallel programs with Pin.Computer,
43(3):34 –41, 2010.

[4] C. Bienia.Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, 2011.

[5] K. Frlinger and M. Gerndt. ompP: A profiling tool for
OpenMP. InProceedings of the International Workshop on
OpenMP, 2005.

[6] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin:
rethinking and rebooting gprof for the multicore age. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 458–469, 2011.

[7] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A
call graph execution profiler.SIGPLAN Notices,
17:120–126, 1982.

[8] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R.
Gaster, and B. Zheng. Twin peaks: a software platform for
heterogeneous computing on general-purpose and graphics
processors. InProceedings of the International Conference
on Parallel Architectures and Compilation Techniques
(PACT), pages 205–216, 2010.

[9] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview
scalability analyzer. InProceedings of the Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
145–156, 2010.

[10] O. Hernandez, R. C. Nanjegowda, B. Chapman, V. Bui, and
R. Kufrin. Open source software support for the OpenMP
runtime API for profiling. InProceedings of the
International Conference on Parallel Processing
Workshops, ICPPW, pages 130–137, 2009.

[11] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore
era.Computer, 41:33–38, 2008.

[12] Intel Corporation. Intel Parallel Amplifier 2011.
http://software.intel.com/en-us/
articles/intel-parallel-amplifier/.

[13] Intel Corporation. Intel VTune Amplifier XE.
http://software.intel.com/en-us/
articles/intel-vtune-amplifier-xe/.

[14] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core
fusion: accommodating software diversity in chip
multiprocessors. InProceedings of the International
Symposium on Computer Architecture (ISCA), ISCA ’07,
pages 186–197, 2007.

[15] M. Itzkowitz and Y. Maruyama. HPC profiling with the
SunStudio performance tools. InParallel Tools Workshop,
2009.

[16] A. Jimborean, M. Herrmann, V. Loechner, and P. Clauss.
VMAD: a virtual machine for advanced dynamic analysis of
programs. InIEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS,
2011.

[17] D. Jones, Jr., S. Marlow, and S. Singh. Parallel performance
tuning for haskell. InProceedings of the 2nd ACM
SIGPLAN Symposium on Haskell, Haskell, pages 81–92,
2009.

[18] C. Kim, S. Sethumadhavan, D. Gulati, D. Burger,
M. Govindan, N. Ranganathan, and S. Keckler. Composable
lightweight processors. InProceedings of the Annual
International Symposium on Microarchitecture (MICRO),
pages 381 –394, 2007.

[19] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In
Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pages 75–, 2004.

[20] A. D. Malony. Event-based performance perturbation: a
case study. InProceedings of the ACM SIGNPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 201–212, 1991.

[21] G. McLaren. QProf: a scalable profiler for the Q back end.
MIT PhD Thesis, 1995.

[22] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri.
Identifying potential parallelism via loop-centric profiling.
In Proceedings of the International Conference on
Computing Frontiers, CF, pages 143–152, 2007.

[23] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing with
satellite kernels. InProceedings of the ACM SIGOPS
Symposium on Operating Systems Principles, pages
221–234, 2009.

[24] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
PinPlay: A framework for deterministic replay and
reproducible analysis of parallel programs. InProceedings
of the International Symposium on Code Generation and
Optimization (CGO), pages 2–11, 2010.

[25] A. Rane and J. Browne. Performance optimization of data
structures using memory access characterization. InIEEE
International Conference on Cluster Computing
(CLUSTER), pages 570 –574, 2011.

[26] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn. PIN:
A binary instrumentation tool for computer architecture
research and education. InProceedings of the Workshop on
Computer Architecture Education, WCAE, 2004.

[27] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan,
M. Rajagopalan, J. Fang, P. Zhang, R. Ronen, and
A. Mendelson. Programming model for a heterogeneous
x86 platform.SIGPLAN Notices, 44:431–440, 2009.

[28] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and
D. Vyukov. Dynamic race detection with the LLVM
compiler, 2011.

[29] S. S. Shende and A. D. Malony. The Tau parallel
performance system.International Journal of High
Performance Computing Applications, 20:287–311, 2006.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
SIGOPS Operating Systems Review, 36:45–57, 2002.

[31] M. D. Smith. Tracing with pixie. Technical Report
CSL-TR-91-497, Department of Computer Science,
Stanford University, 1991.

[32] STMicroelectronics, Inc. PGProf: parallel profiling for
scientists and engineers, 2011.http:
//www.pgroup.com/products/pgprof.htm.

[33] N. R. Tallent and J. M. Mellor-Crummey. Effective
performance measurement and analysis of multithreaded
applications.SIGPLAN Notices, 44:229–240, 2009.

[34] Valgrind Developers. Cachegrind: a cache and
branch-prediction profiler.http://valgrind.org/
docs/manual/cg-manual.html.

[35] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. Taylor.
Conservation cores: reducing the energy of mature
computations. InProceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
205–218, 2010.

[36] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable
MPI Profiling, 2011.
http://mpip.sourceforge.net/.

[37] H. Zhong, S. Lieberman, and S. Mahlke. Extending
multicore architectures to exploit hybrid parallelism in
single-thread applications. InProceedings of the
Symposium on High Performance Computer Architecture
(HPCA), pages 25 –36, 2007.

