Unified Toolkit for Compositional Design

Building Blocks

<table>
<thead>
<tr>
<th>Devices Ctrl. API</th>
<th>Power Ctrl. API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices Ctrl. API</td>
<td>Power Ctrl. API</td>
</tr>
<tr>
<td>Templated Linux Device Drivers</td>
<td>Templated Linux Device Drivers</td>
</tr>
<tr>
<td>Scalable Communication and Ctrl. Interface</td>
<td>Scalable Communication and Ctrl. Interface</td>
</tr>
<tr>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>Reservation</td>
<td>Reservation</td>
</tr>
<tr>
<td>Operation Point</td>
<td>Operation Point</td>
</tr>
<tr>
<td>DMA transfer</td>
<td>DMA transfer</td>
</tr>
<tr>
<td>Cache coherency</td>
<td>Cache coherency</td>
</tr>
<tr>
<td>Hardware</td>
<td>Hardware</td>
</tr>
<tr>
<td>CPU</td>
<td>CPU</td>
</tr>
<tr>
<td>CPU</td>
<td>CPU</td>
</tr>
<tr>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>Specialized Accelerator</td>
<td>Specialized Accelerator</td>
</tr>
</tbody>
</table>

Supervised High Level Synthesis

- Pareto-optimal implementations and composition of accelerator’s sub-components [3]
- Sub-components’ communication optimization [4]
- Scratchpad micro-architecture optimization and local memory reuse (ongoing work)

Virtual Platform

- Full System: runs target OS, software app and device drivers
- Parallel simulation of heterogeneous concurrent components

Methodology for Evaluation and Design Space Exploration

- Target Applications
 - Which kernels will benefit the most from hardware acceleration?
 - Hardware vs. software execution
 - Which is the optimal data token size? Scratchpad size vs. communication overhead.
 - How much parallelism can be exploited? Performance vs. power
 - Which is the optimal operation point? Voltage and frequency scaling

- Constraints
 - Timing requirements, area, power and energy budget
 - Available IPs
 - I/O bandwidth and pin count

- Run HLS
 - IP refinement
 - Integrate Prototype refinement
 - Sweep models parameters
 - IP optimization
 - Resource sharing

- Parameters projection for target system
 - Runtime - Operations count
 - Power - Energy
 - Cost of communication and I/O

CARGO Simulation

Design Space Exploration engine

- Prototype full system performance
- Area, power and latency

System Integration and Implementation

- Embedded Scalable Platform Instance
 - Components selection
 - Communication interface and wrappers selection
 - Drivers and software stack finalization

References

[2] N. Sturikov et al. A 2.5D integrated voltage regulator using coupled magnetic core inductors on silicon interposer delivering 10.84 mV/mm^2. ISSCC 2011

Acknowledgments

This work is supported in part by the DARPA PERFECT program.

Disclaimer: Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.