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ABSTRACT
Previous database accelerator proposals such as the Q100 provide
a fixed set of database operators, chosen to support a target query
workload. Some queries may not be well-supported by a fixed
accelerator, typically because they need more resources/operators
of a particular kind than the accelerator provides. By Amdahl’s law,
these queries become relatively more expensive as they are not fully
accelerated. We propose a second-level accelerator, DB-Mesh, to
take up some of this workload. DB-Mesh is an asynchronous systolic
array that is more generic than the Q100, and can be configured to
run a variety of operators with configurable parameters such as
record widths. We demonstrate DB-Mesh applied to nested loops
joins, an operator that is not directly supported on the Q100. We
show that a naïve implementation has the potential for deadlock,
and show how to avoid deadlock with a careful design. We also
demonstrate how the data flow policy used in the array influences
system throughput.
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1 INTRODUCTION
Single-threaded processors hit their performance wall about a decade
ago; it has become clear that application accelerators—compute
hardware customized for a particular problem domain—are the way
to further improve performance and reduce power consumption.

In prior work, we envisioned a data processing unit (DPU) that
would do for data analytics what graphics processing units (GPUs)
do for image processing. We designed the Q100 [11, 12], a DPU
that targets query processing. The Chinese search giant, Baidu,
announced plans for a data analytic accelerator that shares many
features with the Q100 [6]. One of the most exciting results of
our evaluation is that the Q100’s energy efficiency gains relative
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to software are insensitive to the size of the database. This is a
significant practical result within the context of the ever-increasing
demands of big data processing.

The Q100 obtains these gains by chaining together multiple fixed-
function streaming accelerators for relational operations, amortizing
the expensive data read across multiple operations including aggre-
gations, joins, and sorts. Moreover, the operations are happening
in parallel, with multiple records in a single table processed in a
pipeline, and multiple tables processed in separate parallel instances
of the accelerators. Our design exploits the natural column-oriented
structure in the workload, allowing the Q100 to more efficiently
move and manipulate database content.

Engineering a single accelerator to improve a CPU-based system’s
performance involves a difficult tradeoff: make it too specialized and
it will only work for a small fraction of the workload, which will re-
main dominated by the slower, power-hungry general-purpose CPU.
Make the accelerator too general and it is unlikely to outperform the
general-purpose processor, nullifying any advantage.

In this context, having multiple accelerators for a single work-
load makes sense. Amdahl’s law justifies our approach: adding a
modest accelerator able to cover only a small additional fraction of
a workload—something fairly easy to design—can greatly improve
overall system performance.

2 Q100 BACKGROUND
Q100 [12] is a database accelerator design that implements het-
erogeneous ASIC tiles to process relational operators. It achieves
high performance and energy efficiency. Q100 implements vari-
ous function tiles, including sorter, partitioner, (merge-)joiner, ALU,
boolean-generator, column filter, and aggregator. For each query,
Q100 maps it onto available corresponding tiles, where the output
from one tile can be consumed as the input of another in a pipelined
fashion. Multiple instances of a tile can be included in any candidate
design. The mix of tiles used for the Q100 design was informed both
by analytic target workloads and by area/power measurements for
the corresponding tiles. Q100 aims to off-load a significant portion
of database workloads to improve both performance and energy
efficiency.

3 DB-MESH
The accelerator we propose, dubbed DB-Mesh, is a configurable
fabric of processing elements specialized for database query pro-
cessing (Figure 1). Unlike the Q100 [12], the processing elements
in this fabric are uniform but configurable: each will be able to
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perform any of a number of different database operations. Because
the operators of the Q100 are fixed-function only, inevitably some
queries will need more of some type of operator than is built in to
the Q100. Addressing this is a key goal of the DB-Mesh design:
enabling computational resources to be deployed in a more flexible
manner than the Q100. All core Q100 operators can be mapped to
DB-Mesh.

Occasionally, queries require less common operators. For exam-
ple, queries with a join condition that is not an equality comparison
require the system to compare all pairs of records [9]; in software
this would be called a nested-loops join [8]. This is a key aspect of
our design, and motivates the analysis of deadlock in this paper.

Finally, some queries may stretch the resources of the core Q100-
based component. For example, a core join operator may be designed
to handle up to c columns; joins of tables with additional columns
would need multiple passes through the data, slowing down exe-
cution. In DB-Mesh, we have the opportunity to be more flexible.
Once we know the number of columns needed at query time, we can
configure the fabric and make just one pass through the data.

Our proposed architecture for the configurable fabric is a two-
dimensional array of processing elements (Figure 1). Each process-
ing element contains some basic functionality, such as registers for
buffering, comparators for performing condition tests, counters for
keeping track of multi-packet records, and circuitry for receiving/-
transmitting data to other processing elements. A small amount of
configuration logic determines how the processing element manip-
ulates the data (e.g., what part of the record is extracted, and what
kind of comparison is performed with a local state register) and
transmits the data (e.g., one output port for matches, all output ports
for matches, etc.).

Our choice of asynchronous communication framework allows
for a robust response to unpredictable downstream delays. In a
synchronous design, any delay would force the whole circuit to halt
for a cycle. In an asynchronous design, backpressure can specifically
stall certain paths, while other paths operate at full capacity.

A high-level picture of the array is shown in Figure 1. Data
flows from contiguous blocks of memory into the array from the
left. The start, end, and current addresses of each of the W blocks
are maintained by the memory controller, and memory is read in
a streaming fashion using a suitable batching granularity (e.g., 64
bytes). (In some operator configurations, not all of the W input lanes
will be used.) Information flows through the array from left-to-right
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Figure 1: Our proposed DB-Mesh accelerator: a systolic array
of processing elements

Figure 2: Four-buffer structured processing element design

and/or top-to-bottom, depending on the operator being executed.
When data reaches the right side of the array, it is batched into 64
byte units and written to memory.

A horizontal chain of processing elements can be seen as a simple
linear pipeline. Thus, without using any of the vertical transmission
links, one could implement W parallel pipelines. For example, the
Q100 design includes a linear sorting pipeline that generates sorted
runs of length equal to the length of the pipeline. The array of
Figure 1 could support W parallel sorters each generating runs of
length L. Alternatively, the array could support n parallel sorters,
and use the other W −n contiguous rows for some other operator(s).

To configure the processing elements in the DB-Mesh design,
we envisage a separate control plane that may operate relatively
slowly, in serial rather than in parallel. Since the vast majority of the
time taken by the accelerator will be in data processing rather than
configuration, we prefer to separate the two functions and heavily
optimize just the data processing component.

3.1 Element Design
The processing element design is based on our recent MEMOCODE
publication [1]. That design provides provably correct asynchro-
nous communication on multiple input/output channels, which can
be tricky in cases where one output channel is consumed by the
downstream operator while another output channel is blocked. Flow
control is needed because the transmitter may not have the next
token ready or the receiver may not yet be willing to consume a
token. Buffering also breaks long combinational paths to enable
higher clock frequencies.

As shown in Figure 2, a channel consists of data, a valid bit
that indicates data is present and must not be dropped, and a stop
signal indicating backpressure. A pair of buffers speak this protocol
on both their inputs and outputs and input sequences are provably
preserved [1]. Figure 2 shows a two-input, two-output processing
element. Since the information flows through DB-Mesh from left-
to-right and/or top-to-bottom, two input buffers are placed on the
left and top edges of the processing element, while two output
buffers are placed on the right and down edges. The configuration
logic shown in the center of Figure 2 determines how to manipulate
and/or route the data tokens in the input buffers. For example, the
configuration logic may determine whether to advance data tokens
from the input buffers to the output buffers, and if so, where and
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when to advance the data tokens. The processing element can be
configured in various ways to perform different database operations.
Two common configuration patterns are:

Simple Transfer. the processing element just transfers the data
token from an input buffer to one of the corresponding output buffers.
There are four possible ways in which data can flow: left-to-right,
top-to-botton, left-to-bottom, and top-to-right. Two data flows are
allowed in the same clock cycle if neither the source buffers nor the
destination buffers conflict.

Broadcast. the processing element broadcasts the input data
token to both output buffers, which increases the number of data
tokens. DB-Mesh adopts a strict firing rule that allows a broadcast
to proceed only when both output buffers are available to consume
data token.

Global behavior in DB-Mesh occurs in two non-overlapping
phases. In the first phase, data tokens are transferred between pro-
cessing elements: from upstream output buffers to downstream input
buffers. In the second phase, the data flows internally within each
processing element from input buffers to output buffers, based on the
configuration logic for each element. Processing elements typically
behave identically in the first phase but differ in the second due to
different configurations in different parts of the mesh.

3.2 All-to-All Joins
Consider a more complex operation: a nested-loops style join be-
tween two tables R and S. Suppose we place L records of S in the
processing elements across the top row of the array. We then stream
the rows of R through the top input from memory and across the top
row. In each step, a top-row processing element will compare the
current R record against the current S record. If they match, a join
record (containing a subset of the columns from R and S) will be
generated and transmitted downwards. This second row represents
the pipeline of join results; those results flow from left to right until
they reach memory. Note the importance of allowing elements to
send data to two output ports: the top row both sends input records
to the right and join results down. If we are happy with this design,
we could replicate it at multiple levels of the array, distribute the
input using the first column of the array, and process roughly LW/2
records from S in one pass.

There is the potential for contention in the two-row design be-
cause a join result moving down may compete with a join result
flowing right into the same processing element. We may choose
to give priority to the vertical flow, and apply backpressure to the
horizontal flow. This backpressure may propagate, and temporarily
prevent upstream processing elements from making progress. In
situations where we expect the join result to be much bigger than
the input (i.e., a many-to-many join) the second join-result row will
be the bottleneck. This observation leads to alternative designs
where (based on cardinality estimates from the query optimizer) we
estimate that the join result is d times bigger than the input, and
therefore allocate d rows of the array for transporting the join results.
Collisions in all “transport” rows except the last can usually be re-
solved by sending one join result down and the other across. This
solution is an improvement on the single transport row approach
because d/(d +1) of the output ports, rather than 1/2 of them, are
fully utilized.
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Figure 3: Deadlock with long records.

3.3 Multi-Word Data
So far, we have assumed that a packet of data contains a complete
record from a table. In practice, the data links in our array will not
have fixed width, and some tables will have wider records than what
one packet can accommodate. In such a situation, we generalize the
data flow abstraction so that a record is now a sequence of packets
flowing through the array. To support this abstraction, processing
elements need to be able to keep track of where in a record they
are up to, using an internal counter. Additionally, when dealing
with contention, a processing element must make sure that an entire
record has made it through before packets from another record use
the same path. We have built an initial simulator for this model, and
can visualize the records as “worms” winding their way through the
array.

One appealing aspect of the design of Figure 1 is the absence of
cycles in the flow path. As a result, when sending single packets
containing records through the array, the system would be deadlock-
free. However, this guarantee does not hold when records can span
multiple packets. Our simulations show that deadlock can, in fact
occur, as illustrated in Figure 3. Figure 3(a) shows records, each
consisting of three packets, flowing along the top row of processing
elements. In Figure 3(b), backpressure causes progress in the top
row to stall. However, the join test in the fourth processing element
detects a match and sends the first packet of the join result along
the second row of the array. Subsequent join result packets cannot
proceed immediately due to the backpressure. In Figure 3(c), the
backpressure has eased, and records in the top row flow one cell to
the right. Another join match is detected in the eighth processing
element, downstream of the original match. The join result has no
place to go, because the record that has been partially transmitted
in the second row cannot be interrupted. As a result, the top row
is blocked, preventing the tail of the original joining record from
reaching the fourth processing element, and inducing a deadlock.

4 RESOLVING DEADLOCKS IN DB-MESH
There are various ways of dealing with deadlock, by imposing partic-
ular configurations or protocols on the mesh. For example, if every
path from a join-result generating node to an output port is disjoint
from every other, then no interference can occur. However, such a
design would be inefficient, using many more processing elements
and output ports than needed in the average case. In this section, we
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Figure 4: DB-Mesh for Joins of Long Records

describe a mapping of an all-to-all join operation to DB-Mesh that
is provably free from deadlock, even when records contain multiple
packets of data.

4.1 Configuring DB-Mesh for Joins of Long
Records

The primary reason that deadlock occurs in Figure 3 is that the
packets of a record get separated, leading to reserved regions in the
mesh that block progress. Our design aims to avoid this problem by
preparing complete join records using the first two rows of the mesh,
before transmitting the join record though the network. Once a join
result starts to flow towards an output port, it can do so without
risk of fragmentation. Figure 4 illustrates the design for a join
of two tables each containing 3-packet records. (When the inputs
have different record lengths, we allocate space based on the longer
length.)

The top row is called the processing chain, and it contains ele-
ments called “PE-Ps”. Groups of three PE-Ps coordinate to store
records from the build table. The leftmost of the three stores the
packet from the build-table record containing the join key. The probe
records flow from left to right along the processing chain after being
read from memory. We assume that all packets of a record have been
read from memory before any packets flow into the processing chain.
The first (rightmost) packet of a probe record contains the join key,
so that the first time packets from the two records meet, the PE-P
can determine if they join. A bit is set in this leading probe packet
so that all PE-Ps handling a build record eventually learn whether a
join result should generated.

Once all three probe record packets line up with the three build
table packets, a join result is generated if the earlier comparison was
successful. This join result generation is achieved by transmitting
first the probe and then the build packets down to the second row
of the mesh in an interleaved fashion. This second row is called
the merging chain, and contains elements known as “PE-Ms”. The
rightmost PE-M in a group sends the data down into the transfer
network (note the shading of the arrows in Figure 4). The other PE-
Ms transmit their local data rightwards, and then transmit incoming
data from the left further to the right. PE-Ms have enough buffering
capacity to hold both a build and a probe packet. Probe table packets
also continue to flow along the processing chain, unless there is
backpressure. Backpressure could come from the right, or from

below if a join result needs to be generated but the merging chain is
congested.

The third and subsequent rows are the transfer network, made up
of elements called “PE-Ts”. The flow logic depends on a transfer
protocol to decide whether to send a join record right or down. Any
protocol must ensure that once a join record starts flowing in one
direction, the remainder of the record flows in the same direction
and is not interrupted. Figure 4 includes one small optimization in
which the rightmost PE-M is connected directly to an output port
rather than sending its data down.

All PE types have counters that are configured to wrap after the
appropriate number of packets (input or output table lengths), so that
each PE can keep track of which packet of a record it is up to, avoid
interleaving packets from different output records, and make sure
that the join result is generated in a consistent packet order.

4.2 Freedom from Deadlock
In Appendix A we provide the proof that DB-Mesh is deadlock-
free for joins of multi-word data when configured as described in
Section 4.1. The outline of the proof is as follows. First, we show
that probe table records stay together in the processing chain. This is
important so that join results can be generated “all at once” without
waiting for a straggler packet. We then show that the merging chain
and transfer chain are able to generate and transmit join records
without blocking indefinitely. Together with the acyclicity of DB-
Mesh, freedom from deadlock follows.

5 TRANSFER PROTOCOLS
Once join records are generated, they flow through the lower layers
of DB-Mesh towards the output ports at the right end of the mesh.
The protocol governing this flow can impact performance, as we will
demonstrate in this section. Raw performance can be measured as
the output bandwidth, i.e., the number of output packets generated
per cycle. Efficiency is measured by dividing the output bandwidth
by the number of rows of DB-Mesh used, including rows devoted to
processing, merge and transfer (Figure 4). Efficiency is an important
measure because DB-Mesh can be split into multiple contiguous
subregions to be used for different operators, meaning that over-
provisioning for one operator reduces resources available for other
concurrent operators.

5.1 Join Model
We subdivide the L ×W mesh (Figure 1) into multiple separate
join pipelines of length L as outlined in Section 3.2. The overall
capacity of DB-Mesh for build-table records is proportional to L×W .
Increasing the number of output ports d per pipeline will yield more
output bandwidth for an individual pipeline, but will decrease the
number of pipelines that can be run simultaneously. If a build table is
larger than the DB-Mesh capacity, then fragments of the build table
would be processed in turn, analogously to a block nested loops join.
Probe table records are read and sent independently in parallel along
each of the join pipelines.

In what follows, we simulate a single join pipeline, varying d,
and focus on the interesting case where there are many matches for
each probe tuple.
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Figure 5: Throughput/Efficiency evaluation for single-packet all-to-all join with uniform distribution

Figure 6: Throughput/Efficiency evaluation for single-packet all-to-all join with non-uniform distribution

Figure 7: Throughput/Efficiency evaluation for 3-packets all-to-all join with uniform distribution

Figure 8: Throughput/Efficiency evaluation for 3-packets all-to-all join with non-uniform distribution
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5.2 Performance
We investigate the performance by simulating a join consisting of a
small single-pipeline “build” relation and a large “probe” relation.
The build relation is loaded into the processing elements of the top
row of DB-Mesh. We execute a join corresponding to a range pred-
icate, and manipulate the range endpoints to generate a particular
output cardinality. For example, if a probe record matches four build
records, on average, then the join output from this join pipeline
will have four times as many records as the probe input. For these
experiments, we assume L = 128 (Figure 1) and vary the number of
rows dedicated to the join pipeline. Some experiments use random
assignments of keys to nodes, which may influence the results. We
therefore perform ten runs of each configuration with different ran-
domizations, and show both the mean and standard deviation in the
graphs.

We consider three transfer protocols here:

• Right-First: Send data right if the right buffer is available; other-
wise send data down (unless this is the bottom row).

• Partition: Statically map each top-row processing element to an
output row in a round-robin fashion. Each transfer row is then
responsible for a roughly equal proportion of the join results.

• Dynamic: Processing elements in each column of the transfer unit
are independently and randomly numbered from 1 to r, where
there are r transfer rows. The top row processing element sends
output records to successive “logical” rows 1 to r in sequence.
Because each column is independently permuted, the physical
rows are randomized and uncorrelated across columns.

Our first experiment considers a join in which both input and
output records contain one data packet. The join is configured so
that there are ten matches in the pipeline, on average, for each probe
record, so that the output result is ten times larger than the input.
Figure 5 shows the results when the matches occur uniformly among
the 128 top-row processing elements. Figure 6 shows the results
when the matches occur in a highly biased fashion, where ten of the
elements in the top row generate all the matches, and the remain-
ing elements generate no matches. For uniform data, all transfer
protocols perform reasonably well. For nonuniform matching, the
Right-First protocol does best because it is somewhat responsive to
the current congestion conditions, and can fully saturate the transfer
network as soon as it is provisioned with enough output ports (10) to
match the output and input bandwidth bottlenecks. Partitioning and
randomization do not do so well here because at any given moment
of time, some output rows are over-utilized and some are underuti-
lized. For partitioning this is due to one partition having more that
its share of data generating elements. For the dynamic approach,
this is due to the fact that randomized data is not perfectly uniform.
The variance is also higher for the non-uniform case.

Our second experiment considers a join in which both input
table records contain three data packets, and join results contain
six packets. The join is configured so that there are ten matches in
the pipeline, on average, for each probe record, so that the output
result is twenty times larger than the input (measured in packets).
The top-row processing elements have capacity to hold 42 build-
table records. Figure 7 shows the results when the matches occur
uniformly among the build table rows. Figure 8 shows the results
when the matches occur in a highly biased fashion, where ten of the

Figure 9: Join record distribution to output ports

elements in the top row generate all the matches, and the remaining
elements generate no matches.

Unlike the single-packet case, the Right-First protocol performs
poorly when the output is under-provisioned. The reason for this
behavior is that records in a Right-First protocol can shift between
rows, with two problematic consequences. First, stalled records can
block other records in multiple rows; the other two protocols choose
a single row and can therefore only hold up one row. Second, chang-
ing lanes happens in just one direction (down), meaning that there is
a concentration of traffic on the lowest row. Figure 9 illustrates the
bias in the distribution of packets to the various output ports for the
configuration of Figure 7 when the number of output ports is 12.

The dynamic method slightly outperforms the partitioned ap-
proach in the non-uniform case because all output rows are used,
unlike the partitioned approach that uses at most ten rows. If the
partition approach maps several active processing elements to one
output row, that row may become the bottleneck. Note also that
the non-uniform example has a bottleneck in the transfer of data
from the merge chain to the transfer network. This bottleneck poten-
tially limits the output bandwidth below the capacity of the transfer
network.

For a single-packet workload, or for a well-provisioned multi-
packet workload, the Right-First protocol is the clear winner. The
level of provisioning can be estimated at query optimization time
based on join selectivities. If an under-provisioned multi-packet
workload is needed, the transfer network should be configured with
the dynamic protocol.

For these workloads, where the output bandwidth dominates,
efficiency is best with a non-minimal number of output ports. In
other words, it may better for the aggregate output bandwidth to
provision fewer pipelines each having a larger d.

6 RELATED WORK
The future of computing lies in parallel processing since power
dissipation and energy consumption, instead of integration levels,
are now the limiting factor. The industry has responded in many
ways including arrays of general-purpose processors such as Intel’s
experimental 48-core Single-Chip Cloud Computer and Tilera’s
announced 72-core TILE-Gx. Like DB-Mesh, these chips also sport
high-bandwidth mesh networks, but their approach remains rooted
in general-purpose computing. By contrast, the “cores” proposed in
DB-Mesh are much simpler, more specialized, and should consume
far less area and power. While we do not yet have physical numbers
for DB-Mesh, we are confident that when a database workload
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can run on DB-Mesh, it will consume far less power than general-
purpose alternatives.

At the other extreme of parallel processor complexity, Kung and
Lohman [2] propose systolic arrays—regular two-dimensional ar-
rays of very simple, specialized processors—for database operations.
Superficially, such arrays bear a strong resemblance to DB-Mesh,
but their details differ substantially. Systolic arrays are synchronous:
every piece of data in the array moves one step per clock cycle.
Orchestrating these uniform, global flows is the key challenge in
programming a systolic array. By contrast, DB-Mesh is conceptually
asynchronous to accommodate varying rates, say, at the memory
ports, and can handle dynamically routed data to provide a through-
put improvement by taking advantage of data-dependent behavior.
Kung and Lohman were forced to take such a rigid approach by
integrations levels in 1980, where they estimated a single chip with
extremely simple processors could only operate on at most 1000 bits.
Today, that number would be roughly 100 million, allowing us to
put far more storage throughout the array and consider devoting only
a small fraction of a high-end chip to a custom database processor.

While FPGAs offer the ultimate in configurability [3, 4, 7, 9,
10], our target architecture, like the Q100, is an ASIC that allows
limited per-query configurability. Such circuits sacrifice the bit-
and gate-level configurability of an FPGA for denser logic and
higher clock frequencies. Another positive consequence of reduced
configurability is that configuring DB-Mesh requires fewer bits,
reducing device configuration time. This can lead to increased
opportunity to re-program the device more frequently to fit the
workload.

While this paper focuses on nested-loops joins, our platform
aims to support a variety of database operators. We have therefore
chosen a relatively generic array design and we avoid join-specific
specializations of the systolic array. Our join protocol resembles a
“handshake join” [5, 9], but only one relation is flowing, and output
results have to flow through a transfer network to output ports.

7 CONCLUSIONS
In previous work, we described the Q100, a small, fast accelerator
hard-coded for common database operators. In the present paper,
we describe DB-Mesh, a configurable fabric that is designed for
database work, and can execute functions that cannot be executed
on the Q100, either because the operator isn’t common enough to
hard-code it, or because a query needs more instances of an operator
than the Q100 provides.

We have demonstrated that joins requiring all pairs of records
to be matched can be mapped to DB-Mesh. While straightforward
mappings risk deadlock if records contain more than one packet of
data, we prove that our mapping is free from deadlock. We have also
examined different protocols for transferring join results to output
ports, highlighting their performance as the resources devoted to the
join are varied.
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A PROOF DETAILS
As described in Section 4.1, DB-Mesh processes joins using the
processing chain (P), the merge chain (M) and the transfer network
(T). For an all-to-all join in DB-Mesh, each packet of probe table
records streams across P; along the way, once there is a match,
packets of the probe record and corresponding build record are
copied downwards to memory through T and M. In this model, we
define deadlock as a situation where either
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• A generated output record (or part of it) never exits DB-Mesh
through an output port, or

• A probe table record does not make it through the entire length of
the processing chain.
DB-Mesh can be conceptualized as an array of in/out-buffers.

Figure 10 is a more detailed version of Figure 4 showing the internal
buffers. The following are important properties of buffers and other
structures in DB-Mesh:

P1 The bottom-row out-buffers of M ensure that all packets of a
previous record get out before any packets from later records. For
example, records flowing downwards to a PE-M element may
need to be held up until all packets from previous records, flowing
from the left, have passed. By using counters, the PE-M can know
whether previous records are complete, even if the next packet is
not immediately available in an adjacent buffer.

P2 Buffers in DB-Mesh do not interleave packets of different records.
Again, using counters, processing elements can know when they
are in the middle of a packet sequence for a record, and are thus
required to block potential incoming packets from new records.

P3 The memory won’t send any packet to DB-Mesh from the left
side until all packets of the record is ready.

P4 The memory won’t be indefinitely blocked.
P5 The inputs are finite relations (not infinite streams), so livelock is

not a concern.

LEMMA A.1. Suppose a packet A[k] from a probe table record
advances along the PE-P chain. If the following packet A[k+1] from
the same record is in the in-buffer of the left neighbor PE-P, then
A[k+1] must also advance.

Proof: The simpler case is when no join result is being gener-
ated. In that case, no downward traffic is generated by either A[k] or
A[k+1], and both are free to move right if there is space. The more
interesting case is when join results are being generated downwards
by both A[k] and A[k+1]. Recall that join results for a record are gen-
erated when all probe packets align with corresponding build packets.
We argue by contradiction. Suppose A[k+1] doesn’t advance while
A[k] does. The starting state is as illustrated in Figure 10: A[k+1]
and A[k] are in the buffers labeled a0 and c0. The only reason that
A[k+1] cannot advance is that buffers a1 and a2 are filled with pack-
ets from a previous record, B, and A[k+1] needs to be copied down
into a1. (If a1 was full but a2 was not, then data could flow from
a1 to a2 and from a0 to a1, since PEs each have two buffers.) One
step before this, a3 and b3 (or buffers to the left of them) must be
filled with packets from a record earlier than B. Otherwise, packets
in a1 and a2 would have moved on the previous step and a1 should
be free now. By property P1, c1 and c2 must filled with packets of
B at this moment. Since A[k] needs to have also generated its join
record, the fact that c1 and c2 are full contradicts the assumption
that A[k] advances.

Together with property P3, we have the following corollary.

COROLLARY A.2. Consecutive packets from probe table records
are always found in the same or consecutive PE-Ps.

LEMMA A.3. No buffer in a PE-M will be reserved but empty
forever.

Proof: To be reserved, the buffer must have already seen one
or more packets of this record. Based on P1, that means that the

merging chain and processing chain are free of all earlier records
that could block progress. Each path down to the merge chain has a
capacity of two packets, which in total is enough to hold the entire
join record. Since probe table records stay contiguous (Lemma A.1),
all probe table packets become ready to generate join results at the
same time; there are no trailing packets to wait for. Therefore, after
a finite number of steps, all packets for the join record will flow to
the reserved buffer. Once the final packet passes, the buffer will no
longer be reserved.

LEMMA A.4. No buffer in a PE-T will be reserved but empty
forever.

Proof: Data flows from some merging chain to the reserved PE-T.
Since there is no permanent impediment to flow out of the merging
chain (Lemma A.3), the PE-T will eventually see all packets as the
path to the PE-T is reserved for this join record (Property P2).

LEMMA A.5. No buffer in PE-M or PE-T can hold a packet
forever.

Proof: Suppose a buffer does hold a packet forever. The cause of
this blockage must be that the right neighbor (or possibly the down
neighbor if there is one) is permanently unable to accept the packet.
This cannot be due to normal (i.e., unblocked) processing in the
neighbors, because the workload is finite (Property P5). The neigh-
bor cannot be permanently blocked waiting for a packet (Lemma A.3
and Lemma A.4). That means the neighbor itself must be holding
a packet forever. We can then shift attention to the neighbor and
apply the same argument to show that it must have a neighbor that is
holding a packet forever. But eventually we must get to an output
port, because DB-Mesh is acyclic, which contradicts the assumption
that the node adjacent to the output port is permanently blocked
(Property P4).

COROLLARY A.6. All packets in PE-M or PE-T will arrive at
memory in a finite number of steps.

LEMMA A.7. All-to-all joins in DB-Mesh are deadlock-free.

Proof: All join results exit the network in a finite number of steps,
according to Corollary A.6. The only possible remaining source of
deadlock is a probe table packet that does not make it all the way
across the processing chain. We argue by contradiction. Let P be the
rightmost packet in the processing chain that becomes permanently
blocked. Because it is the rightmost in the processing chain, it cannot
be blocked on the right. It must therefore be blocked because of
backpressure from the merging chain and transport chain. However,
according to Corollary A.6 that block must eventually be released,
and P can subsequently progress, completing the contradiction.
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