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THE CACHE AND CODEC MODEL FOR
STORING AND MANIPULATING DATA
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THIS ARTICLE DESCRIBES AN ANALYTICAL MODEL OF SYSTEMS THAT STORE AND

MANIPULATE DATA. THE CACHE AND CODEC MODEL CAPTURES THE INTERPLAY BETWEEN

TWO CENTRAL ASPECTS OF SUCH SYSTEMS: INFORMATION REPRESENTATION AND DATA-

PROCESSING EFFICIENCY. THIS ARTICLE DESCRIBES THE MODEL AND EXPLORES DESIGN

OPTIONS FOR SYSTEMS THAT INCORPORATE DATA ENCRYPTION AND COMPRESSION. IN

EACH CASE STUDY, THE AUTHORS RAISE SEVERAL RESEARCH IMPLICATIONS AND

DIRECTIONS FOR FUTURE RESEARCH.

......The recent explosion of data has
thrown traditional data management ques-
tions into stark relief. As the data growth rate
outpaces technology scaling, computer sys-
tems designers will need to become increas-
ingly strategic about what data they choose to
store, where they store it, and in what represen-
tation (for example, compressed, encrypted,
processed, or raw). Although modern com-
puter systems span a range of scales and appli-
cations, at their core they all store and
transform information. The cache and codec
model that we developed captures, at a high
abstraction level, the ways a computer system
stores and transforms information. This simple
model of how data flows through a system,
potentially manipulated or transformed along
the way, can help researchers and designers
confront and explore a range of design options.

The cache and codec model represents the
system as a set of interacting components,
each of which has two properties. The first is
the cost per bit of data processed. For a stor-
age component, this might be the time or
energy per bit read or written. For encryption,

this might be the time or energy per bit
encrypted or decrypted. This term is directly
linked to how a particular function is imple-
mented. For example, DRAM requires more
time and energy per bit read than static RAM
(SRAM). Similarly, software encryption is
slower and more power hungry than a hard-
ware implementation.

The second property is bits of informa-
tion per bit of data. Data’s value is in the
information it contains. Depending on how
the information is encoded, the data might
use more or fewer bits to represent it. A stor-
age component that does not manipulate the
data or change the representation would not
change this term. In contrast, a lossless com-
pressor would maintain the information
while shrinking the data, thereby increasing
this term.

Ultimately, what matters is the cost per
bit of information produced—that is,
cost
bitinfo

¼ cost
bitdata

� bitdata

bitinfo
. The cache and codec

model captures the interplay between the
data representation and the characteristics of
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the components that manipulate it, thereby
enabling high-level design-space explorations
for systems that must manipulate large vol-
umes of data efficiently.

In this article, we describe the cache and
codec model, along with two case studies that
use the model to explore the properties of
encrypted and compressed storage systems.

Cache and codec model
We model a simple yet general class of

computer systems consisting of a processor
that draws data from a storage hierarchy.
This storage hierarchy consists of caches that
store information, and, optionally, codecs
that re-encode data along the way.

Because the storage system is often a hier-
archy, the model is an extension of the classic
expression for the expected access time to the
ith level of a cache hierarchy:

Ei ¼ k � Ci þ Ri � Eiþ1 ð1Þ

In this expression, k is the total number of
bits accessed, and Ci is the access cost per bit
at level i. There are two key conceptual differ-
ences with respect to the classic expression.
First, each level of the hierarchy consists of
either a cache (or other storage module) or a
codec. In either case, the first term in Equa-
tion 1 captures the cost of accessing that
module, whether it is storing or re-encoding
data. Second, we have substituted Ri for the
traditional miss rate in Equation 1. Ri is the
“ratio” of a module, which for both caches
and codecs, captures the module’s influence
on the volume of data. In the case of a cache
module, Ri is simply the miss rate, indicating
that for every n bits requested from a cache, it
is expected to request Ri � n bits from the
lower levels of the hierarchy. For a 4� com-
pression module, the R value would be either
4 or 0.25, depending on the direction of the
compression.

As a concrete example, consider a simple
two-level hierarchy. In this scenario, Equa-
tion 1 expands to

E1 ¼ k � C1 þ k � R1 � C2

The first term, k � C1, is the access cost to
the first level; the second term, k � R1 � C2, is
the access cost at level 2. The access cost at a

particular level, which we will call Ai , depends
on the volume of data drawn from the mod-
ule at the ith level and the cost of doing so:

Ai ¼ Vi � Ci ð2Þ

where Vi is the expected volume of data
drawn from a module in bits. The volume of
data at each level is a function of k and the R
values of the upper-level module(s) (for
example, the number of accesses to DRAM
depends on what is happening in the last-
level cache [LLC] and above):

Vi ¼ Vi�1 � Ri�1 ð3Þ

The volume of data being accessed at the
first level, V0, is simply k, which is an input
to the model. In addition to k, the other
inputs to the model are the order of the mod-
ules and an Ri; Cið Þ pair for each module.

Figure 1 illustrates a slightly more com-
plex example modeling memory compres-
sion. This hierarchy contains three levels of
cache, backed by compressed memory. Thus,
between the LLC and the memory sits a com-
pressor/decompressor that compresses in-
coming data on writes and decompresses
outgoing data on reads. The key to using the
model is reasoning about appropriate R and
C values for each module. The compressor
modeled in this example compresses data by
a factor of 4, so R ¼ 0.25. Similarly, in this
example we model an L2 with a 20-percent
miss rate, so for that module R¼ 0.20.

Using Equation 3, we can calculate the
expected volume of data drawn from each
module, as illustrated by the dotted red lines
in Figure 1. Then, using those volume esti-
mates and the efficiency parameter for each
module, C, we can calculate the cost contribu-
tion for each module according to Equation 2
and shown with the dashed lines in Figure 1.

Although the case studies that follow center
on big data, the model is applicable to various
other systems where data gets manipulated
and stored in some form or fashion.

Case studies
We present two case studies of the cache

and codec model for encrypted and com-
pressed storage systems, demonstrating the
sort of design space explorations that it
supports.
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Data encryption
Big data is a rich target for hackers because

of the sheer amount of information stored on
those servers, with high-profile data breaches
of customer records or unauthorized accesses
regularly reported. Even RSA, a company
with expertise in data security technology, is
not immune to these breaches.1 Applying
data encryption to big-data storage systems
could be a second line of attack for security.
This not only is a deterrent to hackers, but
also can minimize the damage should a
breach occur.

The sooner or higher in the memory hier-
archy that data is encrypted, the more secur-
ity this technique offers. However, early
encryption can also be more costly, because
data in the upper levels of a hierarchy is
accessed, by design, more often, and thus will
be encrypted and decrypted more often.
There is thus a tradeoff between complexity,
cost, and security.

In this case study, we use the cache and
codec model to analyze the energy cost asso-
ciated with encrypting data in the LLC,
memory, and nonvolatile storage. For each of
the three levels, we examine several technolo-
gies, as summarized in Table 1. The table also
lists the R and C parameters for each cache
and codec used in this analysis.

We use the SPEC OMP benchmarks,
which have an average dataset size of 31.09
Mbytes, and an average LLC miss rate of 36

percent on Intel Dunnington.2 The page
fault rates were estimated to be an average of
typical virtual-memory miss rates on systems
with page sizes ranging from 4 to 64 Kbytes.3

The read and write energy efficiency values
(C parameters) for LLC are from Chang
et al.,4 and the values for memory and disk
are from Ramos and Bianchini.5

LLC encryption. For each LLC encryption
scenario, we consider three cache technolo-
gies. In the ideal case, the LLC will have both
high density and low power. SRAM is the
more traditional cache implementation with
fast access times, but low density relative to
other technology and high leakage current.
Spin-transfer torque magnetic RAM (STT-
RAM) is an alternative technology with
higher density, but it has high write latency
and write energy consumption. A third op-
tion is embedded DRAM (eDRAM), which
also features high density and low leakage. A
drawback of eDRAM is that it requires
refresh operations, and this is a major source
of power dissipation. Each of these LLC tech-
nologies has tradeoffs with respect to density
and power.

Because the LLC is already power con-
strained, adding a data encryption module to
the system could further increase total system
energy costs. We use our cache and codec
model to explore a system with an encryption
unit followed by the LLC (SRAM, STT-
RAM, or eDRAM), DRAM, and finally a
hard disk. We are interested in understanding
the energy efficiency that data encryption
technologies should achieve in order to pre-
vent significant increases in total energy cost
in these systems.

Figure 2a shows the total access energy as a
function of data encryption and decryption
energy, ranging from an idealized point where
encryption is free to it costing 10 nJ/bit. We
observe that regardless of the LLC technol-
ogy, energy overheads can be made quite low
provided the encryption is implemented effi-
ciently (at 0.2 nJ/bit or lower), but that
beyond that point, the overhead will rise very
rapidly to as much as 251 percent when
encryption/decryption runs at 10 nJ/bit. Of
the three locations to place an encryption
module, before the LLC is, not surprisingly,
the most sensitive to encryption efficiency.
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Figure 1. Illustration of how the cache and codec model captures the

primary features of a memory compression system, namely the

compression’s impact on the volume of data stored in memory and its cost

relative to the cost of the system’s other components.
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Memory encryption. For memory encryp-
tion, we evaluate DRAM and phase-change
memory (PCM) memory using the cache
and codec model. PCM is being explored as
an alternative to DRAM because it is denser
and has a lower idle power. Although
DRAM has lower access times, PCM does
not require refreshing. Given these tradeoffs,
researchers have proposed hybrid PCM-
DRAM systems.8

We do not expect the energy overhead of
memory encryption to be as high as at the
LLC, because of the less-frequent memory
reads and writes that require encryption and
decryption. Nonetheless, it is important to
test this hypothesis. Figure 2b shows the data
access energy for encrypted memory as a
function of the encryption efficiency. As with
the LLC, the total energy cost differs little for
PCM and DRAM. To keep energy costs from
increasing above 5 percent, encryption effi-
ciency should be less than 0.6 nJ/bit, 3 times
less efficient than the 0.2 nJ/bit required for 5
percent overhead with LLC encryption. On
the other hand, the overhead does not rise as
steeply as at the LLC, with an 88 percent
overhead when encryption requires 10 nJ/bit.

Nonvolatile storage encryption. We evaluate
two encrypted nonvolatile storage media,
solid state drives (SSDs) and hard disk drives
(HDDs). SSDs offer roughly three orders of
magnitude lower access latency than HDDs,

and are also more energy efficient. However,
they have lower capacity per dollar,9 creating a
tradeoff between performance, energy, and
cost. We focus on evaluating the energy costs
with the cache and codec model, but we could
adjust C model parameters to analyze per-
formance and dollar costs as well. Examining
Figure 2c, we note that encryption at this level
is far less sensitive to encryption efficiency
than the other two, suggesting that lower cost,
possibly even software encrypters, would be
sufficient. Although the energy overhead for
both SSDs and HDDs is just a fraction of a
percent, the total SSD energy costs are 92 per-
cent lower than for HDDs, which is what we
would expect to find when analyzing the
energy dimension of the tradeoff.

The energy efficiency for various software
AES implementations can vary between 1.55
to 28 nJ/bit depending on how optimized
the design is.10 For ASIC AES-128 imple-
mentations, energy efficiency can range from
0.42 pJ/bit to 0.18 nJ/bit.11 Our models sug-
gest that hardware-based AES encryption is
more suitable for LLC and memory encryp-
tion in order to minimize energy overheads.
At 1.55 nj/bit energy efficiency, software AES
would have to improve energy efficiency by
at least 87 percent for LLC and 61 percent in
the case of memory encryption to keep
energy overheads low.

Combining data encryption with compres-
sion can provide strong protection for data,

Table 1. Technology parameters for the encryption case study.

Level Technology R Cread Cwrite Source

Last-level cache

(LLC)

SRAM 0.36 2.10 nJ/block 2.21 nJ/block Zhang et al.2 and

Chang et al.4

STT-RAM 0.36 0.94 nJ/block 20.25 nJ/block Zhang et al.2 and

Chang et al.4

eDRAM 0.36 1.74 nJ/block 1.79 nJ/block Zhang et al.2 and

Chang et al.4

Memory PCM 5.05e-6 4.94 pJ/bit 33.64 pJ/bit Hennessy et al.3

and Ramos et al.5

DRAM 5.05e-6 1.17 pJ/bit 0.39 pJ/bit Hennessy et al.3 and

Ramos et al.5

Disk SSD 0 150 lJ/4KB �150 lJ/4KB Ramos et al.5

HDD 0 16.8 mJ/4KB �16.8 mJ/4KB Ramos et al.5

........................................................................................................................................
*eDRAM: embedded DRAM; HDD: hard disk drive; PCM: phase-change memory; SRAM: static RAM; SSD: solid-state
drive; STT-RAM: spin-transfer torque magnetic RAM.

.............................................................
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within the performance constraints required
to support big data analytics. We consider data
compression in our second case study.

Data compression
Memory compression is not a new tech-

nology; it dates back to the HP Omnibook

300 introduced in 1993. Thanks to ever-
growing data sizes and concerns about energy
consumption, cache and memory compres-
sion are once again a topic of great interest,
with significant academic scrutiny.6,12

The space of potential compressed storage
designs is vast. Which modules in the mem-
ory hierarchy should store compressed or
uncompressed data? How will each choice
impact performance and energy? Does the
answer differ according to the anticipated
workload? Should compression be done in
hardware or software? Will new technologies
such as 3D stacking and embedded DRAM
make a difference? These questions, and
others, should be evaluated during the design
phase. The cache and codec model can cap-
ture the first-order effects of such systems and
help designers perform the necessary high-
level, path-finding design-space explorations.
In this case study, we demonstrate how the
cache and codec model can be used to
explore extensions of Co-DCC,6 a recently
proposed compressed LLC.

Decoupled Compressed Cache (DCC)
and an optimized design called Co-Com-
pacted DCC (Co-DCC) seek to increase
effective cache capacity at area overheads
comparable to previous compressed caches.6

DCC reduces area overheads using super-
blocks, which contain contiguous cache
blocks that share a single address tag. Frag-
mentation is reduced in a superblock by
decoupling the address tags, allowing sub-
blocks in a set to map to any tag in that set.
Co-DCC further optimizes DCC to reduce
fragmentation by compacting the blocks in a
superblock into the same set of sub-blocks.
DCC increases normalized effective capacity
by 2.2 times, whereas Co-DCC increases this
average by 2.6 times for several workloads.6

Co-DCC addresses the common issues in
cache compression design, including internal
fragmentation and high area overheads, and
can improve both performance and energy
efficiency across a range of workloads.

Using the cache and codec model, we
explore what would happen if the Co-DCC
techniques were applied to other caches in
addition to the LLC. As in Figure 1, each
component in the system, including the com-
pressor/decompressor (C/D), has an associ-
ated (R, C) pair.
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Figure 2. Encrypted data access costs as a function of encryption/decryption

efficiency. Although efficient encryption and decryption can keep the

overheads low regardless of placement, the encrypted LLC (a) is the most

sensitive to efficiency compared to the encrypted memory (b) and

encrypted disk (c).
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The R values for the caches and memory
are the miss rates, whereas for the C/D mod-
ule the R value is the compression factor (that
is, the compressed size over the original size).
Co-DCC uses the CPACKþZ dictionary-
based compression algorithm, which com-
bines CPACK and the zero-block detection
algorithm. The compression factor for
CPACKþZ is on average 0.26 with a decom-
pression latency of nine cycles.6 Cache com-
pression lowers the cache miss rate, which is
captured in the R values for the storage mod-
ules containing compressed data. In particu-
lar, Co-DCC achieves on average 24 percent
lower LLC miss rate across a range of work-
loads,6 so the R values of any compressed
caches are tuned accordingly:

Ri ¼ ð1� PcÞ �M ;

where Pc is the percentage decrease in miss
rate (that is, 24 percent), and M is the origi-
nal miss rate.

In this case study, we set k to be the aver-
age data size for the SPEC OMP benchmark
suite, which is 31.09 Mbytes.2 To explore the
system’s dynamics, we model the average
miss rates ranging from 0 to 100 percent.
Additionally, we model the average miss rates
(R parameter) for the data storage modules
using SPEC OMP running on Intel’s Dun-
nington.2 The R parameter for the C/D
module is based on the compression factor of

CPACKþZ used in the implementation of
Co-DCC.6

The C values are either the per-bit time or
energy cost for each module in the system.
We model the same system as in the original
Co-DCC experiments, a 3.2-GHz processor
with a 32-Kbyte private L1 cache, 256-Kbyte
private L2 cache, 8-Mbyte shared L3 cache,
and 4 Gbytes of main memory.6 We use
Cacti to derive both the energy and latency
cost of each data storage module.7 The
energy and latency cost for the C/D module
are nine cycles and 0.05 nJ per bit for
CPACKþZ.6 Table 2 summarizes the R and
C parameters for this experiment.

We use the cache and codec model to ana-
lyze four systems that differ in terms of where
the C/D is placed in the hierarchy, thereby
varying how much of the hierarchy caches
compressed versus uncompressed data, and
how much data is expected to flow through
the compressor/decompressor.

Figure 3 shows the time and energy break-
down for each configuration, normalized to
the access time and energy of a hierarchy
with no compression.

Examining both access time and energy,
we observe that the higher in the storage hier-
archy the compressor is placed, the more
time (or energy) is spent on compression.
This is because the higher in the hierarchy
the compressor sits, the more data it is called
on to compress or decompress, thus

Table 2. Experimental R and C values for the compression case study.

Level R Clatency Cenergy Source

Compressor/

decompressor (C/D)

0.26 9 cycles decompression,

16 cycles compression

0.05 nJ/block

decompression, 0.13

nJ/block compression

Sardashti et al.6 and

Muralimanohar et al.7

Level 1 (L1) 0.06 2 cycles 0.17 nJ/block Sardashti et al.6 and

Muralimanohar et al.7

Level 2 (L2) 0.43 10 cycles 0.32 nJ/block Sardashti et al.6 and

Muralimanohar et al.7

Level 3 (L3) 0.36 30 cycles 1.47 nJ/block Sardashti et al.6 and

Muralimanohar et al.7

Memory 0.00 160 cycles 60.35 nJ/block Sardashti et al.6 and

Muralimanohar et al.7
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increasing its cost. When miss rates are low,
this is not offset by savings from the lower
levels of the hierarchy caching compressed
data. However, when miss rates are high and
more data is flowing through the lower levels,
the savings due to compression offset its cost.
We observe that the higher the miss rates, the
higher in the hierarchy the compressor

should be placed. Although the focus to date
has been on memory and LLC compression,
this exploration suggests that there are many
circumstances in which pulling the compres-
sor higher into the storage hierarchy could be
beneficial. Compression might even be
thought of as a way to mitigate high cache-
miss rates, and, using compression, a system
could perhaps substitute smaller or lower-
associativity (and lower-power) caches with-
out impacting performance.

It is also instructive to compare and con-
trast the performance and energy trends. For
example, although Figure 3 suggests that L1
compression on workloads with very low
miss rates is detrimental to performance, it is
a clear win from an energy perspective,
reducing it by almost half.

T his article has presented the cache and
codec model for the storage and

manipulation of data. As data volumes and
system design spaces grow, thanks in part to
new algorithms and technologies, high-level
path finding will increase in importance.
This model provides one tool for this pur-
pose. Thanks to its generality, it can be
adapted and applied to a broad range of sys-
tems and applications beyond the two
described here. MICRO
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