
Stories, not Words: Abstract Datatype Processors
Martha Kim, Columbia University

I. INTRODUCTION

In response to strict power constraints and diminishing
single-core performance returns, the hardware industry has
shifted en masse to parallel multicore chips. In theory, par-
allel processing can match historic performance gains while
meeting modern power budgets, but as recent studies show,
that this requires near-perfect application parallelization [7].
In practice, perfect or near-perfect parallelization is often
unachievable: most algorithms have inherently serial portions
and incur synchronization overheads in their parallel portions.
Furthermore, parallel software requires drastic changes in how
software is written, tested, and debugged.

Application-specific integrated circuits (ASICs) are the gold
standard for computational power and performance efficiency,
but it is uneconomical and impractical to produce a custom
chip for every application. As a result most chips are likely
to remain programmable, and, ideally, deliver custom-caliber
efficiency in a general-purpose setting. Hardware accelerators,
such as graphics coprocessors, cryptographic accelerators [10]
or network processors [5] provide this for their target domain,
but have usually had awkward, ad hoc interfaces that made
them difficult to utilize and tended to impede software porta-
bility.

In this paper, we argue that general-purpose processors
should be supplemented with abstract datatype processors (or
ADPs) to deliver custom hardware performance in a form
palatable to software. Abstract datatype instructions (or ADIs)
implement operations on high-level data types such as hash
tables, XML DOMs, relational database tables, and other types
in common use in software. In object-oriented terminology,
each ADI directly implements one public method of a class.

By encapsulating richer algorithms and data than the usual
fine-grained arithmetic, memory, and control-transfer instruc-
tions, ADIs provide ample implementation optimization op-
portunities in the form of an already familiar programming
interface. Architects have made heroic efforts to quickly
execute streams of fine-grained instructions, but their hands
have been tied by the narrow scope of program information
that conventional ISAs afford to hardware. ADIs release these
restraints. Good software programming practice has long en-
couraged the use of carefully written, well-optimized libraries
instead of manual implementations of all functionality; ADIs
simply supply such libraries in a new form.

II. MOTIVATION

It remains an open question how to provide high-
performance, energy-efficient, single threaded computation.
We highlight the following three lessons which motivate this
new direction of research.

• Power is paramount. Power and cooling are projected
to allow only a small fraction of transistors to be fully

operational at any time [9]. With power more valuable
resource than chip area, systems that incorporate special-
ized hardware begin to make a great deal of sense.

• Serial performance still matters. Recent analyses have
shown that parallel speedups require near-perfect appli-
cation parallelization [7]. It is imperative that we continue
to investigate novel high-performance, low-power, single
threaded execution techniques.

• Do not neglect programmability. The multicore revolution
was driven by hardware needs, imposing difficult changes
on software. Ten years later the technical community
is still working to develop effective, reliable parallel
programming techniques. On the other hand, we have
a positive example of hardware/software interference
in MIPS and other early RISC ISAs. The compilers
that accompanied these early RISC processors shielded
programmers from the attendant increases in instruction
count when moving from CISC to RISC. Software tech-
nology alleviated certain challenges that might otherwise
have hindered the adoption of promising hardware archi-
tectures.

Together these three lessons inspire our application of abstract
data types to bridge the divide between applications and
specialized hardware resources.

III. PRELIMINARY EXPLORATION: INSTRUCTION
DELIVERY

In this paper, we examine several potential benefits and
challenges of the ADI approach. Because ADIs encapsulate
algorithms that would otherwise be implemented with many
fine-grained instructions, their use should greatly reduce the
cost of instruction delivery. We selected two contemporary,
performance-critical, serial applications that are not obviously
amenable to parallelization: support vector machines and nat-
ural language parsing.

• Machine learning classification is used in domains rang-
ing from spam filtering and cancer diagnosis. We use
LIBSVM [2], a popular support vector machine library
that forms the core of many classification, recognition and
recommendation engines. In particular, we used LIBSVM
to train an SVM for multi-label scene classification [1].
The training dataset consists of 1,211 photographs of
outdoor scenes belonging to six potentially overlapping
classes, beach, sunset, field, fall foliage, mountain or
urban. We target the sparse vector type with an ADP.
We assume an ADP with support for insertion, deletion
and dot product operations on sparse vectors.

• Parsing is a notoriously serial bottleneck in natural
language processing applications. For this research, we
selected an open source, freely available statistical parser
developed by Michael Collins [3]. We trained the parser
using annotated English text from the Penn Treebank

Project [8] and parsed a selection of sentences from the
Wall Street Journal. For this application we target hash
tables, assuming ADI support for operations such as table
lookup and insertion.

We compare the instruction memory hierarchy in an ADI-
equipped processor to its standard counterpart. We characterize
the performance of the instruction memory system in two
dimensions: total energy consumed (both dynamic and leakage
over all levels of the hierarchy) and total time spent accessing
the memory system.

To collect these data, we instrumented two applications
using PIN, collected the instruction pointer stream, then fed
it to our memory system simulator, which delivered statistics
such as access counts for the caches and main memory, hit
rates, etc. We then combined these statistics with Cacti’s
characterization of the access time and energy of the various
cache configurations or DRAM to produce the data. For each
application, we produced two instruction streams: one from an
unmodified binary and that included ADIs.

Figure 1 shows the results of our instruction fetch experi-
ments. The two columns correspond to the two applications.
The top row depicts the design space exploration we performed
in order to identify a set of Pareto optimal cache configurations
for the subsequent experiments. To compute this data, we
examined the performance of fifty-four cache configurations
for ADI-enhanced and ADI-free instruction streams. We con-
sidered direct-mapped and 2-way icaches of sizes 2KB, 4KB,
8KB, ..., 512KB (each with 32B lines), and unified L2 caches
(each with 64B lines) of sizes 1MB (4-way), 2MB (8-way),
and 4MB (8-way). We used a fixed memory size of 1GB.

Figure 1 (top) also shows the results of our instruction
fetch experiments for each benchmark: SVM (left) and Parser
(right). In each plot, the first set of datapoints () shows
the instruction cache behavior for ADI-free programs, while
the second () shows the change in efficiency with the
addition of ADIs. From this design space we select a set of
Pareto optimal design points for a deeper dive to understand
efficiency characteristics as we increase cache sizes.

SVM (Figure 1, left) shows the greatest improvement: a
48% reduction in access time and 27% reduction in energy
consumption, re-highlighting the outsized importance of the
sparse vector dot product in the execution of this benchmark.
The Parser benchmark shows more modest improvements,
reflecting the smaller fractional importance of the hash table
datatype.

From the fifty-four cache configurations we tested, we chose
three or four Pareto optimal points for further characterization.
The rest of Figure 1 depicts the a detailed breakdown of energy
(Figure 1, second row), access counts (Figure 1, third row),
and total instruction fetch time (Figure 1, bottom row). Each
bar corresponds to a Pareto optimal cache configuration, with
adjacent bars alternating between the ADI-free (baseline) and
ADI-enhanced cases.

Delving into the energy consumption (Figure 1(second
row)), the energy consumption is broken down into static and
dynamic components for each level of the hierarchy. When

SVM Parser

0 10 20
0

0.2

0.4

Fe
tc

h
E

ne
rg

y
(J

)

With ADIs

Baseline

0 5 10 15

Access Time (s)

0

0.2

0.4

Fe
tc

h
E

ne
rg

y
(J

)

Memory Static

L2 Dynamic

L1I Dynamic

0

1

2

3

4
·109

In
st

ru
ct

io
n

A
cc

es
se

s

L2

L1I

2K
+4

M

A
D

I
2K

+4
M

2K
+1

M

A
D

I
2K

+1
M

4K
+1

M

A
D

I
4K

+1
M

0

10

20

A
cc

es
s

Ti
m

e
(s

)

Memory

L1I

2K
+4

M
A

D
I

2K
+4

M
2K

+1
M

A
D

I
2K

+1
M

4K
+1

M
A

D
I

4K
+1

M
16

K
+1

M
A

D
I

16
K

+1
M

Fig. 1. Instruction fetch performance on the benchmarks

a program’s instruction footprint does not fit into the L1I
cache (as when the L1I cache is 2KB or 4KB), L2 dynamic
energy dominates. However, the dynamic L1I energy becomes
dominant as the L1I size increases and the working set begins
to fit. In these plots, we have omitted bars for memory dynamic
energy, L1I and L2 cache static energy, as they were roughly
a thousand times smaller and can not be seen on the graph.

The above analysis is further confirmed when we examine
the number of instruction accesses per level of the hierarchy
(in Figure 1(third row)). As expected, L1I accesses greatly
outnumber accesses at other levels. The L1 hit rate varies
across benchmarks, but in all cases, the number of memory
accesses are minuscule compared with the other counts.

Finally, Figure 1(bottom row) depicts the impact ADIs have
on the overall time the memory system spends delivering
instructions. Here, the results parallel those for the number
of instruction fetches, but for a very different reason. Because
main memory is so slow relative to the L1 cache, even the
minuscule number of instruction fetches that miss the caches
and go to main memory tend to dominate the time spent
accessing memory.

To summarize our findings on instruction fetch, SVM gets
the most performance gain at 48% and the most total energy
reduction at 18.6%, 23.9%, and 27% for the Pareto optimal de-
sign points. Parser showed a 20.8% improvement in instruction
access time and 7.5%-16% reduction in energy consumption
respectively.

IV. PRELIMINARY EXPLORATION: DATA DELIVERY

Recent studies have shown that instruction and data fetch
dominate the time and energy consumption of general purpose
computation [6], [4]. Because ADIs envelop data as well as
algorithms, their implementation can employ special-purpose
storage structures, that when tightly coupled with a customized
datapath, could become considerably more efficient than the
general-purpose alternative. While there has been a great
deal of research on specialized datapaths and computation,
there has been substantially less evaluation of how to extend
that specialization into the memory system. In the following
series of experiments we evaluate the costs and benefits of
segregating and serving streams of data accesses on a type-
specific basis.

We will evaluate how effectively type-specific storage struc-
tures can be deployed to service the type-specific stream of
memory requests. To hold resource usage at comparable levels,
we begin with a single baseline cache hierarchy (BASELINE).
We then augment the hierarchy with a fixed amount of
additional L1 storage. This additional storage can be employed
in several ways: expanding the L1D cache, adding more
sets and holding the ways fixed (CACHEX), expanding the
L1D holding the sets constant and adding ways (CACHEY),
adding a second identical, private L1D cache (PRIVATE),
or adding a adding an appropriate type-specific storage unit
(SPARSEVECand HASHTAB). To provide an upper bound on
the data access savings one can hope to see, we also model

BASELINE X ,L,W

CACHEX 2X ,L,W

CACHEY 2X ,L,2W

PRIVATE X ,L,W X ,L,W

SPARSEVEC X ,L,W X ,L

HASHTAB X ,L,W X ,L

ORACLE X ,L,W ∞

Fig. 2. Storage architectures under comparison. Each of the five organizations
is an extension of a baseline general purpose cache hierarchy, where the L1
data cache is an X byte cache, with L byte blocks, and W way associativity.
Except for ORACLE, each of the extensions extends BASELINE, with an
additional X bytes of storage at the L1 level. The ORACLE configuration
models an imaginary perfect memory module that can serve all accesses
instantaneously and with no energy. It provides an upper bound to the
improvements one can expect to see.

an infinite, instantaneous, zero-energy storage unit to serve
type-related memory requests (ORACLE).

A. SVM and Sparse Vector Store

We model a naïve implementation of a sparse vector store,
which consists of a RAM storage array and a small number
of registers which hold pointers to the next element in a
particular sparse vector. The processing core can issue two
types of requests to the sparse vector store: begin vector which
notifies the vector store that the processor is about to initiate
an operation of the vector at a particular base address, and
next element events through which the processor requests the
next element (i.e., index, value pair) in a sparse vector.

The datapath to custom storage interface can, and should,
be specialized as much as possible to the target datatype.
The experimental results we will show indicate that there is
significant benefit both in data delivery speed and energy con-
sumption when the computation engine can issue operation-
specific events such as the next element requests described
above instead of generic load and store operations.

The sparse vector storage design is painfully simple. There
are a number of ways to improve the microarchitecture. One
option is prefetching. The sparse vector store knows the
processor is doing a dot product operation and thus always
knows what the processor will request next. Even a naïve
prefetch algorithm can be expected to reduce data delivery
time.

B. Parser and Hash Table Storage

We evaluate the Parser benchmark in a similar manner
to SVM. Instead of a SPARSEVEC, we employ a type-
specific storage for hash tables, HASHTAB. Similar to the
SPARSEVEC, the HASHTAB at its core is simply a RAM array
whose total capacity is partitioned into two allocations. The

SVM Parser

5 6 7 8 9

1.4

1.6

1.8

2

A
cc

es
s

E
ne

rg
y

(J
)

6 8 10 12

1.5

2

2.5

Access Time (s)

0

1

2

3

A
cc

es
s

E
ne

rg
y

(J
)

C
A

C
H

E
X

C
A

C
H

E
Y

P
R

IV
A

T
E

S
PA

R
S

E
V

E
C

O
R

A
C

L
E

0

5

10

A
cc

es
s

Ti
m

e
(s

)

C
A

C
H

E
X

C
A

C
H

E
Y

P
R

IV
A

T
E

H
A

S
H

TA
B

O
R

A
C

L
E

Fig. 3. Data delivery energy and performance on two target applications.
The top row of plots indicates the energy-performance tradeoffs for several
different L1 data storage configurations, each with equivalent resources. The
bar charts display the breakdown of energy and access time by memory
structure for each configuration for a single corresponding point.

first allocation is dedicated to caching portions of the table
backbone, while the second allocation caches table elements
themselves. As with SPARSEVEC there is ample room for
microarchitects to optimize the implementation of this storage
structure.

Figure 3(right) plots the energy-performance tradeoff curves
for the four generic cache organizations (CACHEX, CACHEY,
PRIVATE, ORACLE) plus the type-specific store (HASHTAB).
In this case we see that the specialized store leaves the general
purpose stores in the dust, nearly matching ideal storage
properties. The energy and runtime data indicate that the
specialized hash table store operates as a near-perfect cache,
reducing L2 pressure, which in turn reduces trips to memory,
where most of the time and energy costs lie.

V. CONCLUSION

ADPs marry high-level data types with processor
architecture—an unusually large range of abstraction—
to solve a pressing problem in computer science: improving
the energy efficiency of large-scale computation. With respect
to architectural design and hardware-software interfaces,
ADPs represent a move away from efficient manipulation
of primitive data elements to computing in terms of high-
level types, narrowing the growing semantic gap between
programmers and their hardware. The result will be a new
direction for computer architecture and compilers widely
applicable to many problem domains, and empowering
programmers to write faster software that consumes less
energy.

REFERENCES

[1] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label
scene classification. Pattern Recognition, 37(9):1757–1771, 2004.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/c̃jlin/libsvm.

[3] M. Collins. Head-Driven Statistical Models for Natural Language
Parsing. PhD thesis, University of Pennsylvania, 1999.

[4] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield. Efficient embedded computing.
IEEE Computer, 41(7):27 –32, jul. 2008.

[5] H. Franke, J. Xenidis, C. Basso, B. Bass, S. Woodward, J. Brown, and
C. Johnson. Introduction to the wire-speed processor and architecture.
IBM Journal of Research and Development, 54(1):3:1 – 3:11, 2010.

[6] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 37–
47, New York, NY, USA, 2010. ACM.

[7] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33–38, July 2008.

[8] The Penn treebank project. Online
http://www.cis.upenn.edu/t̃reebank.

[9] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor. Conservation cores: Reducing
the energy of mature computations. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 205–218, Pittsburgh, Pennsylvania,
Mar. 2010.

[10] L. Wu, C. Weaver, and T. Austin. Cryptomaniac: a fast flexible archi-
tecture for secure communication. In Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2001.

