
Acceleration Targets: A Study of Popular Benchmark Suites
Lisa Wu and Martha A. Kim,

Department of Computer Science, Columbia University

{lisa,martha}@cs.columbia.edu

1 Introduction
Using dark silicon [14, 3] to deploy specialized ac-

celerators is an idea that is gaining traction in the
architecture community [4, 5, 6, 1]. The underlying
rationale is that specialized hardware and its atten-
dant efficiency is the most effective way to draw per-
formance in the anticipated power-limited scenarios.
Given the cost associated with designing, verifying,
and deploying an accelerator, conventional wisdom
dictates that a particular operation becomes an eco-
nomical and realistic acceleration target when it is
used across a range of applications.
In this study, we survey a set of popular benchmark

suites, assessing the potential of several acceleration
targets within them. In particular, we explore the
following three questions:

• Do the benchmarks exhibit any common func-
tionality at or above the function level?

• What impact does the language or programming
environment have on the potential acceleration
of a suite of applications?

• How many unique accelerators would be required
to see benefits across a particular benchmark
suite? Does this change across suites and source
programming languages?

2 Methodology
To explore these questions, we profile four bench-

mark suites: SPEC2006 (C) [11], SPECJVM
(Java) [12], Dacapo (Java) [2], and Unladen-Swallow
(Python) [13]. Each source language provides a
slightly different set of potential acceleration targets.
For example, SPEC2006 is written in C and offers
two target granularities: individual functions or en-
tire applications. In contrast, a Java benchmark of-
fers three granularities: methods, classes (i.e., all of
the methods for a particular class), and entire appli-
cations. We classify each of these potential targets
as fine, medium, or coarse granularity according to
Table 1.
For each class of acceleration targets, we sort the

targets by decreasing execution time across the en-
tire benchmark suite. Assuming that building an ac-
celerator for a particular target (1) provides infinite
speedup of the target, and (2) incurs no data or con-
trol transfer overhead upon invocation or return, we
compute an upper bound on the speedup of the over-
all suite for the most costly target(s). We repeat this

Benchmark Granularity
Suite fine medium coarse

SPEC2006 function – application

SPECJVM method class package

DACAPO method class package

UNLADEN-SWALLOW function – object

Table 1: Acceleration Targets for Each Suite

analysis for each target granularity in each bench-
mark suite, as outlined in Table 1.

3 Results and Analysis
Our results show that popular benchmark suites

exhibit minimal functional level commonality. For
example, it would take 500 unique, idealized accel-
erators to gain a 48X speedup across the SPEC2006
benchmark suite. The C code is simply not mod-
ular for acceleration, and few function accelerators
can be re-used across a range of applications. For
benchmarks written in Java, however, we see more
commonality as language level constructs such as
classes encapsulate operations for easy re-use. The
question remains whether building 20 accelerators for
SpecJVM or 50 accelerators for Dacapo is worth the
investment for the 10X speedups to be had. In the
particular Python benchmark suite we used, we found
that the applications made minimal use of the built-
ins (e.g., dict or file) resulting in very minimal op-
portunity for acceleration beyond the methods them-
selves. Our intuition is that this may be an artifact of
a computationally-oriented performance benchmark
suite, and is likely not reflective of the overall space
of Python workloads.

4 Conclusion
Our analyses of SPEC2006 confirm what C-

cores [14], ECO-cores [10], and DYSER [5] also found:
that when accelerating unstructured C code, the best
targets are large swaths of highly-application-specific
code. Our Java analyses indicate some hope for com-
mon acceleration targets in classes, though the ad-
vantage of targeting classes over individual methods
appears modest. Across the board, our data show
that filling dark silicon with specialized accelerators
will require systems containing tens or even hundreds
of accelerators. In light of this, we believe the infras-
tructure associated with these accelerators (e.g., net-
works, memory models [7, 9, 8], and toolchains[14])
will only increase in importance.

1

Figure 1: Max speedup of benchmark suite for {fine, medium, and coarse}-granular acceleration targets.

References
[1] C. Cascaval et al. A taxonomy of accelerator ar-

chitectures and their programming models. IBM
Journal of Research and Development, 54(5):1–
10, 2010.

[2] The Dacapo Benchmark Suite. http://
dacapobench.org/.

[3] H. Esmaeilzadeh et al. Dark silicon and the end
of multicore scaling. In ISCA, pages 365–376,
2011.

[4] N. Goulding-Hotta et al. GreenDroid : A mobile
application processor for a future of dark silicon.
IEEE Micro, 31(2):86–95, 2011.

[5] V. Govindaraju et al. Dynamically specialized
datapaths for energy efficient computing. In
HPCA, pages 503–514, 2011.

[6] R. Hameed et al. Understanding sources of inef-
ficiency in general-purpose chips. In ISCA, pages
37–47, June 2010.

[7] J. Kelm et al. Cohesion: a hybrid memory model
for accelerators. In ISCA, pages 429–440, June
2010.

[8] M. Lyons et al. The accelerator store framework

for high-performance, low-power accelerator-
based systems. IEEE Computer Architecture
Letters, 9(2):53–56, Feb. 2010.

[9] B. Saha et al. Programming model for a hetero-
geneous x86 platform. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).
ACM, 2009.

[10] J. Sampson et al. Efficient complex operators
for irregular codes. In Proceedings of the 17th
International Symposium on High Performance
Computer Architeture (HPCA), pages 491–502.
ACM, Feb 2011.

[11] Standard Performance Evaluation Corporation.
http://www.spec.org/cpu2006/.

[12] Standard Performance Evaluation Corporation.
http://www.spec.org/jvm2008/.

[13] Unladen Swallow Benchmarks. http:
//code.google.com/p/unladen-swallow/
wiki/Benchmarks.

[14] G. Venkatesh et al. Conservation cores: reducing
the energy of mature computations. In ASPLOS,
pages 205–218, Mar. 2010.

2

http://dacapobench.org/
http://dacapobench.org/
http://www.spec.org/cpu2006/
http://www.spec.org/jvm2008/
http://code.google.com/p/unladen-swallow/wiki/Benchmarks
http://code.google.com/p/unladen-swallow/wiki/Benchmarks
http://code.google.com/p/unladen-swallow/wiki/Benchmarks

Columbia UniversityJune 10, 2012

Acceleration Targets:
A Study of Popular Benchmark Suites
Lisa Wu and Martha A. Kim

Tuesday, June 19, 2012

Columbia University

But what should
we accelerate?

The story starts like this:

Princess Ruruna and her helper Cain have a problem: To face dark
silicon head on, they want to find applications that have acceleration
potential. But what can they do to tackle the problem?

Let’s see what Tico the fairy has to say...

2

Tuesday, June 19, 2012

Columbia University

Let’s start by looking at some
popular benchmark suites

!Do the benchmarks exhibit any
common functionality?

!If so, is it at or above the
function level?

1

3

Tuesday, June 19, 2012

Columbia University

I will profile SPEC2006 and see if I can
answer this question...

If the hottest function runs lightening
fast, how much faster would the suite be?

!"

!#"

!##"

!###"

!####"

#" $##" !###" !$##" %###" %$##"

&
'(
")
*+

+,
-*

".
/")
-0
1+
"

2304-+"566+7+8'1.89"

):;<%##="

/-36>.3"

4

!"

!#"

!##"

!###"

#" !##" $##" %##" &##" '##" (##")##" *##" +##" !###"

,
-.
"/
01

12
30

"4
5"/
36
71
"

896:31";<<1=1>-74>?"

/@AB$##("C44D12"E9"

539<F49"

To get a 10X speedup, we
need to accelerate over 189

unique functions!

Tuesday, June 19, 2012

Columbia University

Hmm...

What if we
accelerated a bigger

target?

!"

!#"

!##"

!###"

!####"

#" $##" !###" !$##" %###" %$##"

&
'(
")
*+

+,
-*

".
/")
-0
1+
"

2304-+"566+7+8'1.89"

):;<%##="

/-36>.3"

'**706'>.3"

!"

!#"

!##"

!###"

#" $%" %#" &%" !##" !$%" !%#" !&%" $##"

'
()
"*
+,

,-
.+

"/
0"*
.1
2,
"

3415.,"677,8,9(2/9:"

*;<=$##>"?//@,-"A4"

0.47B/4"

(++817(B/4"

Good! It only takes 21!

Oh wait...we need to accelerate 21
different applications for a 12X

speedup?!
21 different applications

5

Tuesday, June 19, 2012

Columbia University

2
!What about benchmark suites that
are not written in C?

!What impact does the language
or programming environment
have on acceleration potential?

It seems that
SPEC2006 cannot be
accelerated easily...

How about other
benchmark suites?

6

Tuesday, June 19, 2012

Columbia University

fine

medium

coarse

Each
source language provides a

slightly different set of potential
acceleration targets.

Using dark silicon [14, 3] to deploy specialized ac-
celerators is an idea that is gaining traction in the
architecture community [4, 5, 6, 1]. The underlying
rationale is that specialized hardware and its atten-

ective way to draw per-
formance in the anticipated power-limited scenarios.

Benchmark Granularity
Suite fine medium coarse

SPEC2006 function – application

SPECJVM method class package

DACAPO method class package

UNLADEN-SWALLOW function – object

Table 1: Acceleration Targets for Each Suite

7

Tuesday, June 19, 2012

Columbia University

!"

!#"

!##"

!###"

!####"

#" $#" !##" !$#" %##"

&
'(
")
*+

+,
-*

".
/")
-0
1+
"

2304-+"566+7+8'1.89"

:5;5<="

>+1?.,"

67'99"

*'6@'A+"

org.apache.axis.transport.http.HTTPSender
.readHeadersFromSocket()org.apache.axis.transport.http.HTTPSender
org.apache.axis.transport.httpJava? Go for

it!

Okay...it takes
78 methods,
59 classes, or
33 packages

to get a 10X speedup
on Dacapo suite.

8

Tuesday, June 19, 2012

Columbia University

!"

!#"

!##"

!###"

!####"

#" $#" %#" &#" '#" !##"

(
)*
"+
,-

-.
/,

"0
1"+
/2
3-
"

4526/-"788-9-:)30:;"

+,-8<=("

>-3?0."

89);;"

,)8@)A-"

Cain, would you
help me with other
Java benchmark

suites?

Of
course!

How about
SpecJVM?

9

23
methods

18 classes
or 14 packages. SpecJVM is better than

Dacapo!

Tuesday, June 19, 2012

Columbia University10

What have we concluded from our study
today?

! Unstructured C code can only be accelerated
in swaths of highly application-specific codes.

! Java has potential to use classes as targets. Is
accelerating fifty unique classes worth a 10X
performance gain?

! Filling dark silicon will require tens to
hundreds of specialized accelerators.

C-cores

Eco-cores
and DySER had the

same conclusion

Tuesday, June 19, 2012

Columbia University11

! What are the benchmarks we should
use to evaluate potential accelerators?

! The infrastructure associated with
accelerators are increasingly
important!

! What happens when we factor in actual
costs?

We have some open
questions...

Looks like
we have a lot

more
research to

do!

Tuesday, June 19, 2012

Columbia University12

Good work today!
Hope you learned
something about

accelerating targets!

Questions?

Yeah, it was quite
a day. Thank you

Tico!

Thanks!

Tuesday, June 19, 2012

Columbia University
13

fin

Tuesday, June 19, 2012

Columbia University14

!"

!#"

!##"

!###"

!####"

#" $#" !##" !$#" %##" %$#"

&
'(
")
*+

+,
-*

".
/")
-0
1+
"

2304-+"566+7+8'1.89"

237',+3:);'77.;"

<+1=.,"

67'99"

Tuesday, June 19, 2012

