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Abstract—The world needs special-purpose accelerators to
meet future constraints on computation and power consumption.
Choosing appropriate accelerator architectures is a key challenge.
In this work, we present a pintool designed to help evaluate the
potential benefit of accelerating a particular function. Our tool
gathers cross-procedural data usage patterns, including implicit
dependencies not captured by arguments and return values.
We then use this data to characterize the limits of hardware
procedural acceleration imposed by on-chip communication and
storage systems. Through an understanding the bottlenecks in
future accelerator-based systems we will focus future research on
the most performance-critical regions of the design. Accelerator
designers will also find our tool useful for selecting which regions
of their application to accelerate.

I. INTRODUCTION

As researchers continue to devise compelling new computa-
tionally intensive applications, hardware systems have reached
an uncompromising power wall that prevents any increase
in system power budgets. Increased computational demands
coupled with a fixed power budget demand advances in the
performance per watt of tomorrow’s chips. Although special-
purpose hardware is the most efficient, we use it only when
power and performance targets cannot be met in software.

We intend the tool we describe in this paper to assist de-
signers of special-purpose hardware accelerators in answering
two key questions: whether a function is computation- or
memory-bound and, accordingly, which functions make good
candidates for acceleration. Amdahl’s law motivates the first
question: accelerating something that consumes only 1% of
the total execution time is obviously not worth the time it
would take.

The main purpose of our tool is to help answer these
questions. For a particular function does arithmetic dominates
the work that a hypothetical accelerator must do or will it
be dominated by data transfers to and from the accelerator?
Matrix multiplication is a familiar computationally intensive
task, but others are just as compelling yet place much larger
(relative) demands on the memory system. Examples of these
include solving Boolean Satisfiability problems, rotating im-
ages, discrete-event simulation, and many others.

We have developed a pintool [3] that collects statistics about
a program’s dynamic memory access behavior. Specifically,
during the execution of a function, it identifies the function
that most recently wrote each byte of data read by the currently
running function. From this information, we derive a count of
the number of bytes that flowed both into and out of each
function, which is an estimate of how memory-intensive a
particular task is.
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Fig. 1. Our model of accelerator hardware: A general-purpose CPU with
its own local storage (e.g., a cache); accelerators, each with their own local
storage; and a shared communication medium (e.g., a bus connected to
memory) that the CPU and accelerators use to communicate. Our pintool
strives to answer whether an accelerator or its interface to shared memory
will be the bottleneck, determining where resources should be focused.

II. OUR VISION FOR ACCELERATORS

We built our tool to answer fundamental questions that will
arise in designing and implementing our vision of custom
hardware accelerators. Power is the motivation: to improve
computational performance per watt, throwing general-purpose
multicore processors at a problem is not the solution because
they, necessarily, have much more hardware than strictly
necessary to perform a certain computation.

From both power consumption and dissipation considera-
tions, the chip of the future will have to consist of an enormous
number of transistors; only a fraction of them can be powered
on at any instant. We envision these chips will include a
handful of general-purpose cores surrounded by many, many
special-purpose accelerators that are powered on only when
their function is needed.

Conceptually, an accelerator must do two things: perform
computation and communicate with its environment. We en-
vision future systems will continue to consist of processors
communicating with memory through a shared bus of some
sort (Figure 1); the communication we envision will thus
be DMA-like, ultimately managed by software running on
the general-purpose cores but conducted by the accelerators
themselves.

To a programmer, we envision our accelerators will appear
like libraries and thus present some sort of functional interface.
Thus, accelerators will exhibit function-like behavior: each
will need to gather input data from memory, operate on it,
and finally write data back.

Our tool attempts to answer whether a particular accelerator
is likely to be computation- or communication-bound, assum-
ing this sort of functional interface. Our custom accelerator
design flow starts with off-the-shelf unaccelerated software
that performs the desired computation, such as JPEG decoding
or file compression. To this software, we apply our tool, either
manually identifying functions as potential accelerator entry
points, or leaving the tool unguided.



Our tool then responds, for each selected function, how
much data moved into and out of it (and its callees), and
how much computation it (and its callees) performed. Here,
we assume that we will accelerate an entire function and all
its callees (i.e., the callgraph below the function).

By considering these numbers in the limit, we determine
whether a particular accelerator will be memory-bound, sug-
gesting careful attention should be paid to its interface to the
memory system, or whether it will be computation-bound,
suggesting the need for more computational parallelism.

III. APPLYING OUR METHODOLOGY TO A SIMPLE
APPLICATION: IMAGE ROTATION

We will use a simple task—rotating a square image 90
degrees clockwise—to illustrate the operation and use of our
pintool. By design, this example is simple enough so that the
results are easy to predict; this exercise is purely to illustrate
the operation of our tool.

Figure 2 shows the code: a C program that reads a PPM
image file into memory using read_ppm(), which repeatedly
calls getchar(), rotates it in place using one of two algo-
rithms, and then writes it to a file using write_ppm(), which
uses putchar().

A central goal of our pintool is to collect information
that depends primarily on the task to be performed, and not
the algorithm used to accomplish it, because any reasonable
accelerator will employ at least a slightly different algorithm.
Since we want to ask what-if questions, we want to divorce
ourselves from our starting point without losing sight of the
tasks we ultimately need our accelerators to perform.

To illustrate our tool’s ability to be algorithm-agnostic, our
example uses two different algorithms to perform rotation.

1) The first, iter_rot(), is a simple, iterative algorithm
that iterates over the pixels in one quadrant of the image,
shifting the four pixels in the corresponding position in
each quadrant to the next quadrant.

2) The second, rec_rot(), divides the image into four
quadrants, translates each of them in a clockwise di-
rection, then calls itself recursively on each quadrant.
This unusual algorithm, which we took from Goldberg
and Robson [2, p. 408], only needs to perform block
translation operations (“bitblts”), which may be easier
to accelerate because they always access memory se-
quentially.

A. Checking For Any Dependence on Problem Size

Our pintool analyzes dynamic program behavior, so a pre-
liminary question is whether its behavior depends strongly on
the input. To answer this, the tool provides a breakdown of
computation (light) and communication (shaded) for each run.

Figure 3 shows the breakdown of computation and commu-
nication for both the iterative and recursive rotate algorithms.
We ran it on a range of image sizes (from 8×8 to 512×512
pixels). While the total work increases roughly proportionately
to the image size, Figure 3 indicates that the relative ratio
of computation to communication is nearly constant. The tiny

#include <stdio.h>
#include <stdlib.h>
#define PIX(x,y) raster[(x) + (y)*wd]
unsigned wd, ht, maxval, *raster;

void rec_rot(int x, int y, int s) {
int i, j;
s >>= 1;
for (i = 0 ; i < s ; ++i)

for (j = 0 ; j < s ; ++j) {
int rgb = PIX(x+i, y+j);
PIX(x+i, y+j ) = PIX(x+i, y+j+s);
PIX(x+i, y+j+s) = PIX(x+i+s, y+j+s);
PIX(x+i+s, y+j+s) = PIX(x+i+s, y+j);
PIX(x+i+s, y+j ) = rgb;

}
if (s <= 1) return;

rec_rot(x,y+s,s);
rec_rot(x+s,y+s,s);
rec_rot(x+s,y,s);
rec_rot(x,y,s);

}

void iter_rot() {
int x, y, s;
s = wd >> 1;
for (y = 0 ; y < s ; ++y)

for (x = 0 ; x < s ; ++x) {
int rgb = PIX(x, y);
PIX(x, y ) = PIX(y, ht-x-1);
PIX(y, ht-x-1) = PIX(wd-x-1, ht-y-1);
PIX(wd-x-1, ht-y-1) = PIX(wd-y-1, x );
PIX(wd-y-1, x ) = rgb;

}
}

void read_ppm() {
int x, y;
scanf("P6 %d %d %d ", &wd, &ht, &maxval);
raster = (unsigned *)malloc(wd * ht * sizeof(int));
for (y = 0 ; y < ht ; ++y)

for (x = 0 ; x < wd ; ++x) {
int rgb = getchar() << 16;
rgb |= getchar() << 8;
rgb |= getchar();
PIX(x,y) = rgb;

}
}

void write_ppm() {
int x, y;
printf("P6\n%d %d\n%d\n", wd, ht, maxval);
for (y = 0 ; y < ht ; ++y)

for (x = 0 ; x < wd ; ++x) {
int rgb = PIX(x,y);
putchar(rgb >> 16);
putchar((rgb >> 8) & 0xff);
putchar(rgb & 0xff);

}
}

int main(int argc, char** argv) {
if (argc != 2 || (argv[1][0] != ’r’ && argv[1][0] != ’i’)) {

printf("USAGE: rotate [ir]\n"), exit(0);

read_ppm();
if (argv[1][0] == ’r’) rec_rot(0, 0, wd);
else iter_rot();
write_ppm();

return 0;
}

Fig. 2. An image rotation program. This reads a square PPM file and rotates
it by 90◦ using either a recursive or an iterative algorithm. We chose rotation
because of its simplicity and the multiplicity of available algorithms.
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Fig. 3. Fraction of communication and computation for various image sizes
for the iterative and recursive rotation algorithms. For all but the smallest
image size (8×8), the breakdown varies little with image size.

8×8 image is one exception, where the fixed startup overhead
accounts for a larger relative proportion of runtime. The other
exception is the computation time for the recursive rotate
function, which grows slowly with image size. This is due to
the overhead of the recursive calls, which grows as O(logn).

The final observation is that getchar() and putchar() I/O
operations dominate the computational work time.

Examining the communication patterns, we see, in all cases,
that the total volume of data transfers in the application are
dominated by local communication (i.e., data transfers within
the read_ppm() routine). It is clear from this data that the
overall behavior and nature of this application does not vary
with input problem size. We can thus proceed to further
examine a single input (128×128 pixels) assured that it is
representative of all input sizes.

B. Locating Hotspots of Computation and Communication

Having established that the behavior of this application does
not change appreciably with the size of the input data (i.e.,
everything is O(n)), the next question is which functions are
most costly and should therefore be accelerated.

To help answer this, our tool reports computation costs for
each function and communication costs between each pair
of functions. Figure 4 shows this data for the iterative and
recursive rotation algorithm.

In this case, the general features of the instruction count data
are somewhat intuitive based on a cursory review of the source
code. What is significantly less obvious is the data movement
through the application. In the next section we present the
pintool that was designed to gather and reveal this information
about an application’s precise data usage patterns. Figure 4
shows the pintool’s numerical and graphical output regarding
computation and communication hotspots when run on the
iterative and recursive rotations of a 128×128 pixel image.
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Fig. 4. Data from our pintool indicating the communication and compu-
tational hotspots for the two rotation algorithms run on a 128× 128 image.
Communication numbers count bytes transferred; computation numbers count
arithmetic and logical instructions.

100 101 102 103
0

0.5

1

Recursive Algorithm

Iterative Algorithm

Computation Speedup

N
or

m
al

iz
ed

R
un

tim
e

Fig. 5. The memory wall, as seen in the recursive and iterative image
rotation kernels. As computation is accelerated, communication speed begins
to dominate, limiting the maximum speed-up.

C. Hitting the Memory Wall

We first use this model to illustrate the well-known, well-
understand phenomenon of the memory wall. The memory
wall appears as the processing rate of the CPU accelerates
increasingly much beyond the processing rate of the memory.
Running the two versions of our rotation algorithm, acceler-
ating the computation while leaving the memory access time
fixed, we see in Figure 5 that performance is very quickly
bound by the memory (i.e. communication) speed.

D. Distinguishing Local from Global Communication

From what we know of our example application, and what
we know of the memory wall, it is clear that we need to
accelerate not only computation, but communication as well.
There are really two classes of communication. There is
“accelerator local” communication which is communication
that is entirely internal to an accelerator, and then there
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Fig. 6. Comparative speedups for image rotation when accelerating the global
environment versus accelerating the the local accelerators
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Fig. 7. Dataflow counts in words for the iterative rotate algorithm. n is the
number of pixels in the image.

is “global” communication between accelerators. Figure 6
shows the relative benefit of accelerating local computation
and communication versus focusing on accelerating the global
communication system for the two rotation algorithms. As is
quite clear the biggest speedups, for both algorithms, are to
be found accelerating local communication.

We can also observe in Figure 6 how accelerating both the
computation and the internal communication of a kernel fully
decouples the kernel from the external system. Accelerating
each kernel to the limit ultimately erases any difference
between them, leaving the overall performance limited by the
environment and the kernel’s external interfaces.

Demonstrating potential speedups is one thing; realizing
them is something else. However, accelerating local com-
munication has signs of feasibility. In local communication,
we have communication that is specific to a single task. A
natural approach is to take advantage of specialization and to
accelerate a kernel’s internal communication in addition to its
computation. This can be accomplished via a kernel-specific
accelerator-local store to the accelerator. This local store
provides tailored, and thus faster, communication resources
for data transfers that are local to the algorithm.

E. Understanding Detailed Dataflow Behavior

Even after we have decided what functions to accelerate,
our tool assists in the detailed design of such accelerators by
providing insight into the way data is passed around. Figure 7
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Fig. 8. Dataflow counts in words for the recursive rotate algorithm. n is the
number of pixels in the image.

and Figure 8 show the detailed, parametric dataflow for the
two rotation algorithms superimposed on the call trees. To
derive these, we used data from our tool from multiple runs
and manually massaged it make it easier to view.

The dataflow in the iterative algorithm is fairly straightfor-
ward. The read_ppm function transforms the image data into
one word per pixel, which the iter_rot function reads, and
finally write_ppm writes it. The extra data are the function
return address (main to each of its children); the width of
the image, the base address of the image, and read_ppm to
iter_rot; and the height, width, maxval, image base, and
read_ppm to write_ppm.

The dataflow in the recursive algorithm is a little more
subtle. rec_rot calls itself recursively; each invocation works
on rotating its area, subdivides the area into four, and passes
this to four child calls. The recursion terminates when rec_rot
attempts to rotate a 4×4 tile.

Only the leaf invocations of rec_rot, which are essentially
tail-recursive, directly pass data to the write_ppm function.
Ultimately, one word per pixel in the image is transferred;
only one representative is shown in Figure 8.

IV. OUR PINTOOL

Our pintool collects an annotated invocation tree represent-
ing the execution of the instrumented program, which we used
to collect the data for the rotation example in Section III.
Below, we describe the operation of our tool in detail.

Our tool produces four log files, which contain information
about functions, the call tree, instruction counts, and memory
transfer statistics. Conceptually, we instrument each instruc-
tion with an action for each log, although some of the actions
are vacuous.



The running tool maintains a call stack, which records a
unique ID for each function invocation and its frame pointer,
which we use to match up calls and returns. We instrument
calls and returns with code that maintains this stack; other parts
of the tool use it to determine which function is running.

• The function log records the function name for each
invocation. The other logs refer exclusively to invocation
IDs, which this log makes human-readable. We write an
entry to this when a call instruction executes. This log is
produced in text or binary format using -tfunction and
-bfunction flags respectively.

• The subcalls log records the call tree of the application as
a list of sub-invocation IDs for each function invocation.
The -tsubcalls and -bsubcalls flags generate this log
in either text or binary form.

To generate this, our tool maintains a hash from from
live function invocations to a list of children, to which
we append when a call executes. At each return, we write
the invocation list of the returning function to the log and
remove it from the hash table.

• The instruction count log records the number of non-
memory-read/write instructions executed during each in-
vocation. These counts can be used to identify execution
hotspots for acceleration. This log will be created using
either the -ticount and -bicount flags.

To count instructions, we instrument each basic block
with code that increments an entry in a hash table map-
ping function invocations to a count. We do not count data
transfer or control-transfer instructions, only arithmetic
and logical operations because we believe these are more
representative of what an accelerator would have to do.
Data transfers are more a side-effect of compiling for the
x86, arising from its very limited number of registers, and
control transfer operations are part of the control, which
almost always can be improved upon in an accelerator.

Upon a procedure return, the final instruction count for
the terminating procedure is written to the log file and its
entry is removed from the hash table.

• The data transfer log is the most interesting: it records
the number of bytes transferred into each function invo-
cation, broken down by source function invocation (i.e.,
who wrote the bytes). This can be thought of a list of
weighted, directed edge between nodes in the invocation
tree. This log is produced if either the -txfers or -bxfers
flag is given. The granularity can be changed from words
to bytes using the -xfer-chunk flag which sets the size,
in bytes, of the blocks of memory to be tracked.

To compute these statistics, our tool maintains a hash
mapping memory locations to the invocation IDs of the
last reader and last writer. When we encounter a memory
write, we set its last writer to the invocation ID of the
current function and clear the last reader ID. At a read, we
check this hash table. If the current invocation ID is the
last reader, we ignore the read because it represents the
same invocation re-reading data it already learned about.

...

...

Fig. 9. The busiest functions, in terms of communication (top matrix) and
computation (bottom row), in the JPEG decoder. The functions are ranked by
their total amount of computation. We only show the top 10 functions.

Otherwise, we credit the invocation with a read from the
last writer and update the last reader ID to the current
function invocation.

To report transfer statistics, we maintain a hash from
invocation ID pairs (source and destination) to transfer
counts. The contents of this hash is updated at read
operations as described above, and it is written, in part, at
every function return. There, we log the number of bytes
transferred into the function and remove these entries
from the hash.

We only record read operations because they neces-
sarily imply a matching write. This deliberately does not
count data that is written and never read; we assume a
shrewd accelerator designer would identify and optimize
away such behavior.

V. EXPLORING JPEG ACCELERATION

We now demonstrate our pintool on a more complex appli-
cation: JPEG decoding, which we ran on a 40K image.

We started by gathering some information about the ap-
plication: we used the data from the pintool to generate the
“heatmap” shown in Figure 9. Because this example has
over 100 unique functions, we cropped the image for legibility.
The functions are sorted by overall computational load. From
prior knowledge about JPEG encoding, we expected IDCT
to dominate, and indeed it does rank highly in terms of
total computation. However, we were surprised to find color
conversion ranking as highly as it did. This feature of the
application we discovered only once the pintool had revealed
the implicit computation and memory usage.

To understand the potential performance improvement
of these hotspots, we selected the top four functions,
color_conversion, IDCT, idct_1d, and get_symbol. Accel-
erating each one individually, we found the speedups shown
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Fig. 10. The potential speedup from accelerating one or more functions

in Figure 10 ( ). Though these are the hottest spots, we
find we are still fighting Amdahl’s law with no single function
yielding large overall speedups. The fact that the speedups
are small for individual functions indicates a reasonably well-
balanced starting application.

When no single accelerator produces satisfactory speedups,
a natural next step is to consider accelerating multiple func-
tions. In this case we have selected the two most effective
accelerators, IDCT and color_conversion, and evaluate two
hardware configurations which accelerate both (Figure 10,

). In the first configuration with private accelerator stores
the two accelerators each have their own individual accelerator
store. In the second configuration with a shared accelerator
store, the two accelerators share a single, store. From the data
in Figure 10 we learn that, in the limit, the “shared” store
architecture is only marginally better than the “private store”
arrangement. Such insights can be important in effectively
steering the accelerator design process.

VI. RELATED WORK

A number of researchers have used dynamic binary instru-
mentation for related, but not identical, applications.

Nethercote and Seward [5] describe how Memcheck (part
of Valgrind) tracks all the memory used by a program for
the purposes of checking for errors like reading uninitialized
values and array bounds violations. It actually tracks state for
each bit of memory to identify problems with, say, bit-field
operations. We take a more naïve approach.

The Redux system of Nethercote and Mycroft [4] is more
ambitious than our tool: it aims to collect complete dataflow
information about information passed around in a running
program, including data in registers. Our focus is just on
memory because we assume data passed through registers is
part of the computation that will be accelerated and thus we
do not considering it a limiting factor.

Our work bears a slight resemblance to taint analysis, which
has been implemented using dynamic binary instrumentation,

among other techniques. Like our application, the goal of
taint analysis is to understand program dataflow, but for the
purpose of identifying potential security risks. The system of
Clause et al. [1] builds on Pin and also looks at dataflow
within functions, but their analysis also chooses to take control
dependencies into account, something we do not need to do.

Olszwski et al. [6] uses dynamic binary instrumentation
to implement software transactional memory. Their system
intercepts and records memory accesses within atomic regions,
then dynamically adds code that commits the operations to
memory. Our desire to understand memory access behavior is
similar, but their ultimate objective is very different.

VII. CONCLUSIONS

In this paper we presented a pintool that tracks implicit
computational and communication load across the functions
of an application. We have demonstrated its exploratory power
on the small example of image rotation and on a larger more
obfuscated JPEG decode computation. Put together, the pintool
and limit-based accelerator evaluation methodology employed
here, allows designers and architects to explore many critical
questions relating to accelerators:

• How should one evaluate a kernel as a candidate for
acceleration?

• When designing an accelerator for a particular kernel,
where should one’s efforts focus, on computation or local
storage?

• Does the “correct” answer to the preceding questions
depend on the architecture of the larger chip (e.g., the
global communication infrastructure or the presence of
other on-chip accelerators)?

These are the questions the community will need to answer
as we investigate accelerator-based chips. We believe that the
data collection tool and modeling methodology presented in
this work will be an asset in those investigations.
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